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Influence of permanent molecular dipoles on surface anchoring of nematic liquid crystals

M. A. Osipov,* T. J. Sluckin, and S. J. Cox†
Faculty of Mathematical Studies, University of Southampton, Southampton SO17 1BJ, England

~Received 8 July 1996!

We consider the ordering of molecular dipoles at a nematic surface and the influence of this ordering on the
equilibrium director orientation and the anchoring energy. Both phenomenological and molecular approaches
are used. We show that a thin, spontaneously polarized layer will appear even at a structureless nematic surface
without any charged impurities or gradients of the order parameter. The ordering of molecular dipoles in this
layer is determined by strong dipole-quadrupole interactions, modified by the presence of the surface. Surface
polarization gives a significant contribution to the anchoring energy of nematic liquid crystals composed of
strongly polar molecules. The estimates indicate that in such systems the dipolar contribution is very large and
could even be predominant, for example, at a free surface of some nematic liquid crystals. We show also that
in the case of large longitudinal dipoles the equilibrium director orientation at a free surface is homeotropic. In
the case of large transverse dipoles the alignment is planar. The principal results of this study are consistent
with experimental observations on ferroelectric layers at nematic interfaces and with data on the orientation of
typical polar nematics at a free surface.@S1063-651X~97!01801-1#

PACS number~s!: 61.30.Gd
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I. INTRODUCTION

Surface properties of nematic liquid crystals attract mu
attention for both fundamental and technological reasons
the one hand, a liquid-crystal interface poses several inte
ing problems in the general theory of anisotropic nonunifo
fluids. Experimentally, one observes various kinds of surf
ordering and surface transitions~see@1# for a review! that are
far from being understood completely. On the other hand,
surface anchoring of nematic liquid crystals plays a vital r
in the fabrication of liquid-crystal display devices, whic
make use of thin nematic cells. The delicate control of
surface parameters of such cells is impossible without
understanding of the general microscopic mechanisms
determine the surface anchoring of nematic liquid crysta

The phenomenological theory of the surface properties
nematic liquid crystals was developed by Sluckin and P
niewierski @2# and by Sen and Sullivan@3#. This approach
has been complemented by microscopic theories develo
by several authors using different approximations@4–9#. In
spite of some discrepancies between the results of diffe
authors, it has been found that short-range steric and van
Waals interactions result in the equilibrium planar orien
tion of a nematic at a free surface. By contrast, long-ra
quadrupole-quadrupole interactions can compete with sh
range potentials, and for sufficiently large quadrupoles th
is the possibility of a tilted orientation or a temperatur
induced planar-homeotropic surface transition@5,6#.

In real liquid crystals one also finds some strong interm
lecular interactions that have not been taken into accoun
the existing microscopic theory@4–9#. In particular, many
nematic liquid crystals used in experimental studies and
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plications possess large longitudinal or transverse dipo
Symmetry considerations permit molecular dipoles to be
dered at a surface, and indeed spontaneous polarization
thin boundary layer of a nematic liquid crystal has been
served experimentally@10–13#. This surface polarization can
make an important contribution to the surface free energy
a nematic liquid crystal because the dipole-dipole interact
energy is very strong in the case of large molecular dipo
We shall see below that the ‘‘dipolar’’ contribution is at lea
comparable to all other contributions or even can be p
dominant for some nematic liquid crystals~such as cyanobi-
phenyls! with very large dipoles.

The only attempt to take the surface dipolar effects in
account of which we are aware was made by Parsons@14#
many years ago. Later McMullen@15# also considered the
dipolar gradient terms in the free-energy expansion spec
to the diffuse nematic-isotropic interface. According to P
sons, the free energy of the nematic surface can be writte

Fs5acosq1bcos2q, ~1!

whereq is the tilt angle of the nematic director with respe
to the surface normal. The first term in Eq.~1! comes from
the coupling between the surface polarizationP and the sur-
face electric fieldE, while the second term is claimed to b
determined by quadrupolar interactions.

The simple surface free energy~1! was used by Parsons t
describe planar to homeotropic transitions at the nematic
face. In this description, the two terms in~1! compete with
each other and possess a different temperature depend
thus leading naturally to the possibility of temperatur
induced anchoring transitions. The essence of this argum
is as follows. Dipolar and quadrupolar contributions to t
surface energy can be qualitatively~and obviously! distin-
guished using symmetry criteria; dipolar terms are of
form cosq, whereas quadrupolar terms take the fo
cos2q. The problem with this approach is that in equilibriu
the absolute value of surface polarization can also depen
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55 465INFLUENCE OF PERMANENT MOLECULAR DIPOLES ON . . .
the tilt angleq. In fact, we shall see below that the comp
nent of polarization parallel to the director is always prop
tional to cosq. Now the two terms on the right-hand side
Eq. ~1! possess the same general structure after minimiza
and surprisingly one cannot single out the dipole contri
tion using the naive symmetry categorisation suggested
Parsons.

In this paper we consider the appearance of surface po
ization and its influence on the surface anchoring of nem
liquid crystals using both phenomenological and dens
functional approaches. The phenomenological descrip
will be developed in Sec. II and the molecular theory in S
III. In Sec. III we investigate the microscopic origin of th
dipolar ordering in a thin boundary layer of a nematic liqu
crystal near a flat, structureless, charge-free surface. In
IV there is a brief discussion of the significance of our
sults. Some more mathematical details have been releg
to the Appendixes.

In Sec. III we have developed a microscopic statistic
mechanical approach to the problem of surface dipolar in
actions in a nematic liquid crystal. We show that the sp
taneous polarization in such a boundary layer is caused
the interaction between permanent molecular dipoles
quadrupoles. This interaction is averaged out in the bulk,
gives a significant contribution when the interacting m
ecules are close to a flat surface. In this case the sur
polarization is induced by an inhomogeneous distribution
molecular dipoles and quadrupoles at the surface.

The simple molecular theory permits estimates of the
polar contribution to the total anchoring strength of a ne
atic at a flat surface. It will be shown that this contribution
rather large and could even be predominant, for example
a free surface of cyanobiphenyl-type nematic liquid crysta
We shall also see that large molecular dipoles have a st
tendency to be normal to the surface. Thus, in the cas
large longitudinal dipoles the director orientation at a fr
surface is expected to be homeotropic, whereas in the ca
large transverse dipoles it must be planar.

In addition to the effects we discuss in detail, we ment
two other possible electric-field effects at the nematic s
face. The first is related to the field caused by charged
purities adsorbed at the surface@16#. The other is the so-
called order electric effect, which involves the appearance
a polarization proportional to the gradient of the avera
quadrupole density near the surface@17,18#. We discuss
briefly the relative importance of these effects in Sec. IV

II. PHENOMENOLOGICAL DESCRIPTION
OF SURFACE POLARIZATION

Let us consider a nematic liquid crystal in contact with
structureless flat surface lying in thexOy plane. The free
energy of such surface for nonpolar nematics has been
sidered in detail by Sluckin and Poniewierski@2# and Sen
and Sullivan@3#. In the case of nematic liquid crystals com
posed of polar molecules one also has to take into acc
the surface polarizationP, which is an independent thermo
dynamic quantity. In all calculations in this paperP is a
quantity per unitvolumeand is supposed to be constant ov
the dipolar layer of thicknessj. A related quantity, which
might turn out to be more easily measurable in some exp
-
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ments, would be the integrated polarization per unitarea
P*5Pj. Although there have been speculations about
existence of a spontaneously ordered polar nematic phas
real nematic liquid crystals the polarization is confined to
very thin boundary layer of microscopic thickness. We sh
consider only systems that~a! possess zero polarization i
the bulk and~b! are not close to a ferroelectric phase tran
tion. In these cases the typical length scale of the polariza
decay must be of the order of the molecular length. T
means that all polarization is concentrated in a very t
layer of thicknessj and contributes only to the surface fre
energy f s , which actually comes from averaging over th
thin boundary layer@3#. However, we note that this conclu
sion is invalid for a broad nematic-isotropic interface. In th
case the dipolar effects are determined by the slow gradi
of the polarization@15#. By contrast, the length scale of th
nematic order parameter variations near the surface is ge
ally much larger than the molecular length because it is
versely proportional toa(T2T* ), whereT* is the nematic-
isotropic transition temperature@19#.

Now the free energy of the polar nematic surface can
expanded in powers of the polarization

f s5 f s
0~Q!1~M•P!1

1

2
~P•W•P!, ~2!

where f s
0(Q) is the free energy of the nonpolar nematic su

face discussed in detail in@2,3#. In Eq. ~2! M has the mean-
ing of some effective surface field and the tensorW is the
inverse surface dielectric susceptibility. In the simplest c
the vectorM is just the electric field due to surface charg
@20,21#, i.e.,M52E0. On the other hand, it will be shown
in Sec. III that there is an effective surface fieldM even in
the simple case of a structureless charge-free flat wall. T
effective field is determined by the discontinuity in the ave
age molecular quadrupole density at the flat surface.

The general expression~2! follows by symmetry; any sur-
face must produce some polarity since the symmetry pl
parallel to it is removed. The parametersM andW in ~2!
also can be expanded in powers of the nematic order par
eterQ by exact analogy with the case of a nonpolar nema
surface@2,3#. In the general case the tensor order parame
Qab is biaxial near the surface, but this biaxiality appears
be small@22# and, like previous authors@4–9#, we shall ne-
glect it here. Now the tensor order parameter can be wri
in the formQab5S@ n̂an̂b2(1/3)dab#, wheren̂ is the nem-
atic director andS is the scalar order parameter. In this ca
the surface fieldM and the tensorW depend only on the
surface normalê and the nematic tensorn̂an̂b and can
readily be written in the general form. For example, there
only two independent contributions to the surface fieldM
that can be composed fromê and n̂an̂b : m1ê and
m2n̂(ê•n̂). In the general case the coefficientsm1 andm2
can depend on cos2q5(n̂•ê)2.

From symmetry reasons the effective surface fieldM and
the inverse susceptibilityW can now be written as

M5m1ê1m2n̂~ n̂•ê! ~3!

and
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466 55M. A. OSIPOV, T. J. SLUCKIN, AND S. J. COX
Wab5g1dab1g2êaêb1g3n̂an̂b1g4~ êan̂b1êbn̂a!~ n̂•ê!,
~4!

where (n̂•ê)5cosq andq is the tilt angle of the directorn̂
with respect to the surface normalê. We emphasize that in
the general case the effective surface fieldM is not parallel
to the surface normalê and the main axes of the invers
surface susceptibilityWab are not parallel to eitherê or n̂.
Only in the case of homeotropic alignmentêi n̂ is the nematic
surface characterized by a symmetry axis parallel to the
face normal.

Substituting Eqs.~3! and ~4! into Eq. ~2!, we obtain the
expression for the surface free energy

DFs~P!5~m11m2!Picosq1m1P'sinq1
1

2
g1~Pi

21P'
2 !

1
1

2
giPi

21
1

2
g2sin

2qP'
2

1~g21g4!sinqcosqPiP' , ~5!

with

gi5g2cos
2q1g312g4cos

2q. ~6!

HerePi5(P•n̂) is the component of the surface polarizati
along the director andP'5uP2n̂(P•n̂)u is the component
perpendicular to it. Minimization of this free energy the
yields the expressions for the components of the equilibr
surface polarization

Pi5cosq@2~m11m2!~g11g2sin
2q!

1m1~g21g4!sin
2q#s~q!, ~7!

P'5sinq@2m1~g11gi!1~m11m2!~g21g4!cos
2q#s~q!,

~8!

with

s~q!5@2~g11g2sin
2q!~gi1g1!

2~g21g4!
2sin2qcos2q#21. ~9!

Note thatPi}cosq andP'}sinq. This means that the firs
two terms in Eq.~5! give similar contributions to the surfac
free energy, which now have the symmetry of cos2q.

Substituting Eqs.~7!–~9! into Eq. ~5!, one can obtain an
expression for the surface free energyDFs(q), which ap-
pears to be a complicated function of the tilt angleq. This
expression, however, can be simplified if we assume that
main axes of the inverse surface susceptibility tensorWab
are determined mainly by the directorn̂. This assumption is
obviously correct in the bulk. By making it also for the su
ceptibility of the surface layer we assume, in fact, that
susceptibility is affected only weakly by the surface. In th
case~which corresponds to high values of the nematic or
parameter and to large longitudinal dipoles! the coefficients
g1 andg3 are much larger theng2 andg4. In this case one
obtains

Pi'2m~g11g3!
21cosq, P''2m1g1

21sinq, ~10!
r-

e

e

r

and

DFs~q!'2W0cos
2q1const,

where

W05
m2

2~g11g3!
2

m1
2

2g1
. ~11!

We note that the sign of the anchoring strengthW0 is deter-
mined by the balance between the two terms in Eq.~11!. The
first term is proportional to the coefficientm, which deter-
mines the surface polarizationPi parallel to the director. The
second term in Eq.~11! is proportional to the coefficien
m1, which determines the transverse polarizationP' . Thus
the anchoring strengthW0 appears to be positive or negativ
depending on the balance between the tendencies of lon
dinal and transverse molecular dipoles to be perpendicula
the surface, respectively. In the case of large longitudi
dipoles the polarizationP'!Pi andm@m1. Then the an-
choring strengthW0 is positive withW0'm2/2(g11g2). We
thus conclude that the ordering of permanent molecular l
gitudinal dipoles at a flat nematic surface promotes hom
tropic director alignment.

In this section we have developed an elementary phen
enological theory. It indicates that, at a flat structureless s
face, a net surface polarization due to the ordering of per
nent longitudinal molecular dipoles promotes homeotro
director alignment. However, at this stage we are not yet a
to predict the magnitude of this effect. To calculate ho
large the dipolar contribution to the total anchoring stren
of a nematic liquid crystal is, as compared to other contrib
tions, we must resort to a molecular theory. This theory m
be able to predict the coefficients of the phenomenolog
theory in terms of molecular model parameters. This the
will be developed in Sec. III.

III. MICROSCOPIC APPROACH

A. Preliminary comments

In the general case the polar nematic liquid crystal is
scribed by the one-particle distribution functionf 1(v,r ),
which depends on molecular positionr and orientationv. In
this paper we use the simple model of a uniaxial molec
with the longitudinal dipolem i . In this case the distribution
function depends on the unit vectorâ in the direction of the
long molecular axes. The nematic ordering is characteri
by the tensor order parameterQab5^@aaab2(1/3)dab#&,
where the angular brackets denote the statistical average
polar ordering is described by the polar order parame
p5^â& and the polarization is given byP5rm i^â&, where
r is the number density. If the polarization is weak, the d
tribution function can be approximately expressed as

f 1~r ,â!5 f 0~r ,â!13~ â•p!1•••, ~12!

wheref 0(1) is the distribution function of the nonpolar stat
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The description of the polar nematic liquid crystal is pa
ticularly simple in the limiting case of the perfect ordering
the long molecular axes. In this approximationaaab5n̂an̂b
and the distribution function depends only on the class
spin-like variableh561 specifying the direction of the lon
gitudinal dipole mW i along the nematic axis. Thusâ5hn̂
and f 1(r ,â)5 f 1(r ,h). For small homogeneou
polarization

f ~h!511
1

2
h^h&1•••, ~13!

where the averagêh& is related to the polarization

P5rm i^h&n̂. ~14!

B. General results

The microscopic theory of the nematic surfa
uses the density-functional approach@23,7# to the theory of
liquids. The density-functional theory of liquid crysta
relies on the representation of the free energy as a functi
of the one-particle distribution functionf 1(r ,v), which
depends on the positionr and on the orientationv of the
molecule @23#. The general structure of this function
is not known, but the functional derivatives of the free e
ergy are related to the direct correlation function of the m
dium. The expression for the free energy of the nema
phase can then be obtained by means of an expan
of the free energy of the nematic liquid crystal around
value in the isotropic phase@23#. This expansion is, in fact
a generalization of the usual Landau–de Gennes expan
in terms of the order parameter.

In the case of a flat structureless surface the nem
can be assumed to be homogeneous in the (x,y) plane
parallel to the surface. In this case the one-parti
distribution function depends only on the distance fro
the surface z: f 1(r ,v)5 f 1(v,z). The free energy of
a semi-infinite nematic sample at densityr and
temperatureT can now be written approximately as

FN /s5FI /s1rkBTE dvE
0

`

dz f1~v,z!lnf 1~v,z!

2
1

2
r2kBTE dv1dv2E

0

`

dz1E
0

`

dz2

3E dx12dy12C2~v1 ,v2 ,r12!D f 1~v1 ,z1!

3D f 1~v2 ,z2!1•••, ~15!

wherex125x12x2, y125y12y2, FI is the free energy of the
isotropic phase, s is the surface area
D f 1(v1 ,z1)5 f 1(v1 ,z1)21/4p , C2(1,2) is the two-particle
direct correlation function of the isotropic phase, and thz
-
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-
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axis is normal to the plane of the surface. The higher-or
terms in Eq.~15! depend on higher-order direct correlatio
functions.

The general free energy~15! can be used in the
description of surface effects if one can separate between
bulk and surface parts of the total free energy of the sam
Tjipto-Margo and Sullivan@4# and Teixeira and Sluckin@5#
have performed this separation with the help of the Fow
approximation @24#, which assumes that the densi
and the nematic order parameter near the surface are equ
their bulk values. In the case of a polar nematic surfa
however, one has to take into account that near
surface the one-particle distribution functionf 1(v,z) de-
pends also on the polarizationP, which is confined to a thin
boundary layer. In this case we shall make a simple gen
alization of the Fowler approximation. We assume th
density and nematic order parameter are still equal to t
bulk values, but there exists in addition a thin surface la
of thicknessj with homogeneous average polarizationP.
In this model the one-particle distribution functio
f 1(v,z)5 f 1s(v) when 0,z,j and f 1(v,z)5 f 1b(v) when
j,z. Here f 1b(v) is the bulk orientational distribution
function of a nematic andf 1s(v) is the orientational distri-
bution within the surface polar layer. We note thatf 1b(v) is
different from f 1s(v) because the latter depends on the s
face polarizationP.

The total free energy~15! can now be represented as
sum of two terms

FN5Fb1Fs . ~16!

HereFb is the bulk free energy of the sample, which is giv
by

Fb5E d3r f b~r !, ~17!

with

f b~r !5rkBTE dvE dv f b~v!lnf b~v!

2
1

2
r2kBTE d3r12E dv1dv2C2~v1 ,v2 ,r12!

3 f b~v1! f b~v2!. ~18!

In the thermodynamic limit the bulk free energyFb is pro-
portional to the sample volume.

The second term in Eq.~16! is the free energy associate
with the nematic surface. As shown in Appendix A, it can
written approximately as
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Fs /s5rkBTjE dv1@ f 1s~v1!lnf 1s~v1!2 f 1b~v1!lnf 1b~v1!#1
1

2
r2kBTE dv1dv2C̃2~v1 ,v2 ,r12! f 1b~v1! f 1b~v2!

1r2kBTE dv1dv2C̃2~v1 ,v2 ,r12!@ f 1s~v1!2 f 1b~v1!# f 1b~v2!2r2kBTjE dv1dv2C̃0~v1 ,v2 ,r12!@ f 1s~v1!

2 f 1b~v1!# f 1b~v2!2
1

2
r2kBTE dv1dv2C̃2~v1 ,v2!@ f 1s~v1!2 f 1b~v1!#@ f 1s~v2!2 f 1b~v2!#

2
1

2
r2kBTjE dv1dv2C̃0~v1 ,v2!@ f 1s~v1!2 f 1b~v1!#@ f 1s~v2!2 f 1b~v2!#, ~19!
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C̃2~v1 ,v2!5E dr12Q~r12•ê!~r12•ê!C2~v1 ,v2 ,r12!

~20!

and

C̃0~v1 ,v2!5E dr12C2~v1 ,v2 ,r12!, ~21!

wherej.r c
0 is the thickness of the surface polar layer, w

r c
0 the direct correlation radius. HereQ(r12•ê) is a step func-
tion: Q(x)50 if x,0 andQ(x)51 if x.0.

Note that the last four terms in Eq.~19! depend on the
difference between surface and bulk one-particle distri
tions f 1s(v)2 f 1b(v), where the surface distribution func
tion f 1s(v) depends on the surface polarizationP. In a nem-
atic liquid crystal composed of uniaxial molecules wi
longitudinal dipoles, the one-particle distribution function
the polar surface layerf 1s(v1)5 f 1„(â1•n̂)

2,(â1•P)…. By
contrast, the bulk distributionf 1b(v1)5 f 1„(â1•n)

2
….

The free energy of a nonpolar nematic surface is rep
sented by the second term in Eq.~19!. This contribution,
which depends only on the nematic order parameterQab ,
was first derived by Tijpto-Margo and Sullivan@4# and has
been discussed extensively before@7#. The first term and the
last four terms in Eq.~19! represent the polarization
dependent part of the free energy that is under considera
in the present paper. At small polarization the differen
f 1s(v)2 f 1b(v)}P and the third and the fourth terms in E
~19! are linear inP. These terms correspond to the seco
term (M•P) in the phenomenological expression~2!. The
first, the fifth, and the sixth terms in Eq.~19! are quadratic in
polarizationP and correspond to the second term in~2!.

Different terms in Eq.~19! have slightly different origin.
We note that the first, the fourth, and the sixth terms
proportional to the thickness of the surface layerj. These
terms have the meaning of an extra free-energy density in
surface layer multiplied by the volume of the layer. By co
trast, the second, the third, and the fifth terms are not p
portional to the layer thickness. These contributions are
fact, nonlocal as they cannot be represented as an inte
over the surface layer volume. As a result, they contain
extra power ofr 12 under the integral.

The polarization-dependent contribution to the surfa
free energy must be determined by some polar intermole
-

-

on
e

d

e

he
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o-
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e
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lar interaction. We shall see later that the most import
such interaction is between permanent molecular dipoles
quadrupoles. However, the electrostatic dipole-dipole a
dipole-quadrupole interactions are long range. These te
produce well-known difficulties in statistical theory of fluid
~see, for example,@25#!. In the present case one finds form
difficulties in evaluating the integral in Eq.~20!.

At large intermolecular separation the asymptotic expr
sion for the direct correlation function isC2(1,2)
52Vl(1,2)/kBT, whereVl(1,2) is the long-range part of th
pair interaction potential. Then at larger 12 the integral in Eq.
~20! is convergent only conditionally~i.e., the result depend
on the order of integration! when V(1,2) is the dipole-
quadrupole interaction potential proportional tor 12

24 . Similar
problems appear in the calculation of lattice sums in the
electric theory of polar crystals@26#, and the general metho
to overcome these difficulties was proposed by Ewald lo
ago @27#. In the context of the statistical theory of pola
fluids this method corresponds to the separation between
short-range and long-range parts of the electrostatic pote
before applying the formal density-functional theory@18,28#.
Then the short-range part of the potential can be taken
account in the usual way. The long-range part of the elec
static interaction determines the energy of the average e
tric field, which depends on the shape of the sample. Th
questions, together with the actual separation procedure
the present case, are discussed in more detail in Append
The energy of the average electric field~which is related to
the polarization by Maxwell equations! in the surface layer
can be written as@see Eq.~B9!#

Uel52pE dk~Pk•k!~P2k•k!k22. ~22!

In the case of a flat nematic surface the surface polariza
P depends only on the distancez along the surface norma
ê. Hencek5êk and Eq.~22! can be simplified, yielding

Uel52pE dk~Pk•ê!~P2k•ê!.

This electrostatic energy, located in the surface polar la
makes an additional contribution to surface free energy
must be added to Eq.~19!, which presents a contribution
from short-range forces.
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C. Perfect orientational order

A general expression for the surface free energy of a n
atic has been presented in Sec. II. By performing an exp
sion in powers of the surface polarization, one can use th
expressions to estimate the quantitiesM andWab in Eq. ~1!
for the phenomenological surface free energy. We m
these estimates for the simple case of a nematic liquid cry
composed of molecules with longitudinal dipoles. In order
simplify the calculations, we suppose that the long molecu
axes in the surface region are perfectly ordered. This
proximation will have only a minor quantitative, and n
qualitative, inaccuracy@7#.

In this approximation the one-particle distribution fun
tion of the surface layer is given by Eq.~13!. Substituting
Eq. ~13! into the general expression~19! yields the equation
for the polarization contribution to the surface free energ

Fd /s5~M•P!1~P•W•P!, ~23!

with

M5
1

8
kBTm i

21n̂ (
h1 ,h2

h1@C̃2~ n̂,h1 ,h2!2jC̃0~ n̂,h1 ,h2!#,

~24!

Wab52
1

8
kBTm i

22n̂an̂b (
h1 ,h2

h1h2@C̃2~ n̂,h1 ,h2!

2jC̃0~ n̂,h1 ,h2!#1
1

8
kBTjr21m i

22 , ~25!

where

C̃2~ n̂,h1 ,h2!5E dr12Q~r12•ê!~r12•ê!C2~ â1 ,â2 ,r12!

~26!

and

C̃0~ n̂,h1 ,h2!5E dr12C2~ â1 ,â2 ,r12! ~27!

for â15n̂h1 and â25n̂h2. The last term in Eq.~25! is pro-
portional to the thickness of the surface polar layerj. This
term has the meaning of the ‘‘bulk’’ dielectric susceptibili
multiplied by j, while the first term in~25! is a surface
correction to the susceptibility.

We note that the polarizationP vanishes ifM50. One
can readily see from Eq.~24! that any nonzero contribution
toM can come only from the direct correlation function~and
hence from the corresponding interaction potential that
the same symmetry! that is odd inh1 and even inh2. This is
equivalent to being polar with respect toâ1 and nonpolar
with respect toâ2. On the other hand, the inverse suscep
bility Wab is determined by the correlation function that
odd in bothh1 andh2.
-
n-
se

e
tal

r
p-

s

-

D. Dipolar contribution to the surface free energy

Now let us estimate the quantitiesM andWab in the
molecular field approximation using some simple interm
lecular interactions. In this approximation the direct corre
tion function

C2~1,2!52~kbT!21V~1,2!Q~r 122k12!,

where V(1,2) is the pair intermolecular potential an
Q(r 122k12) is the steric cutoff factor that depends on t
molecular shape via the functionk12(1,2). The function
k12(â1 ,â2 ,û12) depends on the relative orientation of the tw
molecules and appears to be rather complicated. Fortuna
there exists a simple interpolation expression proposed
van der Meer and Vertogen@29#

k125D1
1

2
~L2D !@~ â1•û12!

21~ â2•û12!
2#. ~28!

This expression is exact for two specific relative orientatio
of the two molecules, i.e., whenâ1i â2i û12 and â1i â2'û12,
whereû125r12/r 12.

In a nematic liquid crystal composed of uniaxial mo
ecules with longitudinal dipoles the interaction potent
V(1,2)5V(â1 ,r12,â2) depends on the unit vectorsâ1 and
a2 and on the intermolecular vectorr12. In the case of per-
fect nematic orderingâ15h1n̂, â25h2n̂, and the pair poten-
tial depends only on the directorn̂, intermolecular vector
r12, and the spinlike variables h1 ,h2: V(1,2)
5V(n̂,r12,h1 ,h2).

As discussed at the end of Sec. III C, a consequenc
Eq. ~24! is that the vectorM is nonzero only if the potentia
V(â1 ,r12,â2) is polar with respect toâ1 and nonpolar with
respect toâ2 ~i.e., it must be odd inh1 and even inh2). In a
system of anisotropic noncharged molecules with large p
manent dipoles the predominant interaction of this kind is
electrostatic dipole-quadrupole interaction. In the case
perfect nematic order this can be written as

VQd~h1 ,h2 ,r12!52Qm ih1h2
2~ n̂•û12!FP2~ n̂•û12!2

2

5G ,
~29!

whereQ is the molecular quadrupole. At the same time t
inverse surface susceptibility tensorWab is determined
mainly by the electrostatic dipole-dipole interaction potent

Vdd~h1 ,h2 ,r12!52
2

r 12
3 m i

2h1h2P2~ n̂•û12!.

Now dipole-dipole and dipole-quadrupole interactions a
long range. Thus it is necessary to separate the long-ra
parts of these electrostatic interaction potentials~see Appen-
dix B! and to use the effective short-range potentials in E
~26! and ~27!:

Vdq
eff5Vdq~1,2!@Q~r 122k12!21#,

Vdd
eff5Vdd~1,2!@Q~r 122k12!21#.

We note that the effective dipole-dipole and dipol
quadrupole potentials are nonzero only within the exclud
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volume for the two molecules, which is determined by t
inequalityr 12,k12. At the same time, the excluded volum
is isotropic forr 12,D and therefore the corresponding co
tribution vanishes after integration overû12 in Eqs.~26! and
~27!. Thus the quantitiesM andWab are determined by the
dipole-dipole and dipole-quadrupole interaction potenti
for D,r 12,k12. As shown in Appendix B, the contributio
from the long-range parts of the electrostatic interaction
-

r

a

s

-

tential determines the energy of the average electromagn
field ~see also@38#! and will be added to the final expressio
for the surface free energy.

Substitution of the effective dipole-dipole and dipol
quadrupole interaction potentials into Eqs.~25! and ~26!
yields the expressions for the functionsC̃2(1,2) and
C̃0(1,2),
C̃2~ n̂,h1 ,h2!52~kBT!21E dû12S 2Q(û12•ê)ln~k12/D !Qm ih1h2
2~ ê•u12!FP2~ n̂•û12!2

2

5G22k12m i
2h1h2P2~ n̂•û12! D

~30!

and

C̃0~ n̂,h1 ,h2!52~kBT!21E dû12[ln~k12/D !22m i
2h1h2P2~ n̂•û12!2k12

21Qm ih1h2
2~ ê•û12!] FP2~ n̂•û12!2

2

5G , ~31!
l

ns-

be

gy

lar
whereD is the molecular diameter. Equations~30! and ~31!
depend on the function ln(k12/D). This function can be ap
proximated similarly to Eq.~28!,

lnj12/D' ln~L/D !~ n̂•û12!
2.

Substituting this expression into Eqs.~30! and~31! and then
into the general equations~24! and ~26!, one obtains, after
the summation overh1 andh2,

M52
5

6
rQln~L/D !n̂A1 , ~32!

Wab52n̂an̂bFL2D

2
A21j ln~L/D !A3G1

j

8 S kBTrm2D dab ,

~33!

where

A15E dûQ~ û•ê!~ û•ê!~ n̂•û!3F251P2~ n̂•û!G ,
A25E dûQ~ û•ê!~ û•ê!~ n̂•û!2P2~ n̂•u!,

A35E dû~ n̂•û!2P2~ n̂•û!. ~34!

The coefficientsA1 , A2, andA3 can readily be estimated fo
small tilt anglesq2!1. In this case one obtains

A1'
68p

175
1o~q2!, A2'

p

4
1o~q2!, A3'

4p

15
1o~q2!.

~35!

We note that all coefficientsA1 , A2, andA3 are of the order
of unity. Therefore we present simple estimates for the qu
tities M andWab omitting all numerical coefficients of the
order of one:
n-

M'2rQln~L/D !n̂~ n̂•ê!, ~36!

Wab'2n̂an̂bFL2D

2
1j ln~L/D !G1

j

8

kT

rm i
2 dab . ~37!

E. Final estimates

Comparing Eqs.~37! and~38! with the phenomenologica
expressions~3! and ~4!, we obtainm252rQln(L/D) and
g15jkT/8rm i

2 . The termm1ê in Eq. ~37!, the surface field
M , is absent and thereforem150 in the present simple
theory. Accordingly, the termsg2êaêb and g4(êan̂b
1êbn̂a)(n̂•ê) are absent in Eq.~38! and thusg25g450
here. In the case of perfect nematic ordering and zero tra
verse dipole the transverse polarizationP' vanishes. Then
the dipolar contribution to the surface free energy can
written as@see Eq.~5!#

DFs5m2Picosq1
1

2
~g11g3!Pi

2 ,

with the equilibrium polarization

Pi52
m2

g11g3
cosq.

Finally, the dipolar contribution to the surface free ener
reads

DFs52
1

2

m2
2

g11g3
cos2q. ~38!

Substituting the expressions for the coefficientsm2 ,g1, and
g3, obtained above, we obtain the estimate for the dipo
contribution to the total

DFs52
1

2

r2Q2ln2~L/D !gD

@L12j ln~L/D !#gD1j/8
cos2q, ~39!
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where the dimensionless parametergD5rm i
2/kT.

Equation~39! shows that the dependence of the anchor
strength on the value of molecular dipole is determined
the dimensionless parametergd5rm i

2/kBT. This parameter
is of the order of unity in the case of large molecular dipo
(m uu'425 D! characteristic of cyanobiphenyl liquid crys
tals. For very large dipoles the dipolar contribution to t
anchoring strength no longer depends on the value of
dipole and reaches a saturation value that is approxima
given by Wd;@rQln(L/D)#2/2@L12jln(L/D)#. Setting
r5231021 cm21, L5331027 cm, L54D, j52L, and
Q510225 esu @30#, we obtainWd;1021 erg cm22. This
estimate shows that the dipole contribution to the surf
free energy can be very large if the nematic liquid crys
consists of molecules with large longitudinal dipoles. Inde
this estimate ofWd is comparable to, or even larger than, t
typical anchoring strength of various nematic liquid cryst
(W0;102221023 erg cm22) @31–33#. Even if we have
overestimated it in the context of the present qualitat
theory, this is still an indication that the effect is strong; t
longitudinal dipoles have a very strong tendency to al
perpendicular to the structureless surface.

We note that the above numerical estimates forWd are
valid in the case of large molecular dipoles. In the case
weakly polar molecules, by which we meangd!1, Eq.~39!
reduces toWd;@rQln(L/D)#2rmi

2/LkBT. This contribution
vanishes whenm i→0.

IV. DISCUSSION

Both the phenomenological and the microscopic theo
presented in this paper predict that a spontaneously polar
layer will always be found at a nematic surface. This lay
exists even at a structureless flat surface, in the absenc
electric fields, charged impurities, or gradients of the or
parameter. The appearance of the surface polar layer
formal consequence of the fact that a boundary between
different media destroys reflection symmetry with respec
the surface plane. This symmetry, by contrast, is unbroke
the bulk system. The surface is not a mirror plane of
system and thus a surface spontaneous polarization may~and
usually will! exist even when the polarization is absent in t
bulk, a fact pointed out by Petrov and Derzhanski@40#. This
simple symmetry argument is almost obvious. The details
the actual microscopic mechanisms that induce the orde
of dipoles at the flat surface, however, are not similarly o
vious. In the molecular theory developed in this paper
surface polarization is caused by the electrostatic interac
between permanent molecular dipoles and quadrupoles.
average dipole-quadrupole interaction vanishes in the bul
a simple fluid. By contrast, because a part of the interac
sphere is cut off by the surface plane, this contribution to
intermolecular potential gives a nonzero~and large! contri-
bution near the surface; this phenomenon is someti
known as the incomplete interaction at an interface. The
erage dipole-quadrupole interaction potential then becom
function of the angle between the average dipole and
surface normal. In this way the terms linear in the polari
tion appear in the free energy expansion and, when the
face energy is minimized, one finds a spontaneous sur
g
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polarization. This result is confirmed by experimental da
obtained by Guyot-Sionnestet al. @10#, Jérômeet al. @12,13#,
and Mochizukiet al. @11#, who have observed a polar laye
at the nematic surface with a thickness of few molecu
lengths. There is, in addition, indirect evidence of the ex
ence of surface polarization in nematics. For examp
Lavrentovichet al. @20# have observed some surface elect
optic effects that have been interpreted as arising from
face polarization and not from the flexoelectric effect.

Surface polarization gives a significant contribution to t
anchoring strength of a nematic liquid crystal composed
strongly polar molecules. For large longitudinal dipoles t
dipolar contribution favors homeotropic director alignme
at the surface. The dipoles have a strong tendency to
perpendicular to a structureless surface. The estimates
formed in Sec. III B indicate that the dipolar contribution
very large (Wd;1021 erg cm22) and is comparable to, o
even larger than, the typical values of the anchoring stren
measured for various nematic liquid crystals. Thus the di
lar contribution may even predominate, for example, at
free surface of liquid crystals that possess strongly polar
minal groups. The experimental data indicate indeed that
anobiphenyl and oxycyanobiphenyl liquid crystals~which
have a strongly polar CN group! align homeotropically at the
free surface@34–36#.

In the case of purely longitudinal dipoles the minimum
the surface free energy~39! corresponds to homeotropi
alignment of the nematic director. By analogy one may s
pose that for purely transverse dipoles the equilibrium ori
tation of the director will be planar~i.e., again the dipoles are
perpendicular to the surface!. This conclusion is also not in
contradiction with the existing experimental data. For e
ample, the nematic para-azoxyanisole, with a moderate
lecular transverse dipole, has a planar orientation at the
surface@34#, in contrast to cyanobiphenyls whose large d
pole seems to force a homeotropic orientation. Detailed
culations for this case, however, are more difficult.

We have presented numerical estimates forWd . Our
qualitative conclusions are valid as long as the molecu
dipoles are sufficiently large. If the molecular dipoles a
small, the problem is more complicated and cannot be
scribed completely using the model we have developed
this paper. Now the molecular polarizability gives a subst
tial contribution to the susceptibility of a liquid crystal an
the polar part of the surface free energy cannot be calcul
by considering only the ordering of permanent molecu
dipoles. However, in this case the dipolar contribution to
total anchoring strength is relatively unimportant.

In this paper we have considered an interaction betw
permanent molecular dipoles and the structureless surfac
a two-body level. Clearly, some many-body effects can a
make a contribution to the surface energy. Some of th
many-body effects are represented on the macroscopic l
by an interaction of the dipole with its image. At a fre
surface the permanent dipolemW 1, which makes an angleu
with the surface normal, creates the image dip
m2'm1(e21)/(e11), wheree is the dielectric constant o
the medium. The image dipole makes an angle ofp2u with
the surface normal. As a result, the interaction of t
dipole with its image can be estimated asUdd
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'm2(e21)/(e11)z23cos2u, where z is the distance
from the surface. This interaction will contribute to the to
anchoring energy of the liquid crystal if we assum
that the direction of the dipole is parallel to that of the dire
tor n̂. Considering the dominant contribution from th
dipoles in the first molecular layer, we can estimate this c
tribution to the surface free energy to b
DW;rm2l22(e21)/(e11), wherel is a molecular length
L;231027 cm.

For large dipoles this contribution can be of the ord
of 1 erg cm22, i.e., it is very large. We note, however, that
this way one strongly overestimates the corresponding c
tribution. In fact, the concept of an image dipole is valid on
for a macroscopic dipole embedded in a medium a
relatively large distance from the surface. In other wor
there must be some ‘‘continuous medium’’ between
dipole and the surface. This requires that distancez@a,
wherea is the typical dimension of the particles that com
pose that medium. Thus one cannot apply this concep
dipoles in the first or second molecular layers. Furthermo
at distancesz@L the interaction with the image dipol
appears to be much weaker and can be neglected in com
son with other contributions.

Finally, we discuss the relation between the phenom
discussed in this paper and other polar effects at a nem
surface. First, the nematic order parameter at the surfac
not equal to that in the bulk and there is some spa
variation of the order parameter in a thin boundary lay
Nematic liquid crystals are anisotropic and possess a non
quadrupole densitŷQab&}S in the ground state. Then th
spatial variation of the nematic order parameter n
the surface results in the nonzero average polariza
proportional to the gradient of the quadrupole dens
P52“–Q. This effect, known as order electricity@16#,
has been discussed in detail elsewhere@18,37#. The order
electric effect favors a tilted director orientation at the fr
surface. However, according to the estimates of Ref.@38#,
the order electric contribution to the anchoring strength is
the order of 231023 erg cm22 and should be much weake
than the contribution from the ordering of permanent dipol
We conclude that the contribution from the ordering of p
manent molecular dipoles dominates the order electric c
tribution in nematic liquid crystals composed of strongly p
lar molecules. For fluids made from nonpolar or weak

FIG. 1. Schematic division of space into the half planeN con-
taining the bulk liquid crystal, the surface planeNS containing a
polar liquid crystal, and the regionS without a liquid crystal.
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polar molecules, however, this conclusion may no lon
hold.

In real nematic liquid crystals the nematic-substrate int
face may exhibit extremely complex phenomena. The s
strate can adsorb charged impurities from the solvent
these effective surface charges produce a surface ele
field @16,17#, which then, in turn, can interact with molecula
dipoles. The surface electric field can also be present on
boundary between a nematic liquid crystal and t
Langmuir-Blodgett film@41#. Whatever its origin, the surfac
electric field can make a significant contribution to the a
choring strength of the nematic. Its relative importance, ho
ever, depends crucially on the nature of the surface and
the concentration of charged impurities, which may stron
vary from one nematic sample to another and thus not
reproducible.
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APPENDIX A: SURFACE FREE ENERGY
OF THE POLAR NEMATIC LIQUID CRYSTAL

In the simple model of the polar surface discussed in S
III A, the distribution function of the nematic liquid crystal i
different in the polar surface layer of thicknessj and in the
bulk, respectively. This distribution functionf 1(v,z) can be
written as

f 1~v,z!5Q~z2j!@ f s~v!2 f b~v!#1 f b~v!, ~A1!

where Q(x) is the Heaviside step function,Q(x)51 if
x.0, andQ(x)50 if x,0. Here f b(v) and f s(v) are the
bulk and surface orientational distribution functions, resp
tively.

The total free energy is described by Eq.~15!. We can
distinguish three regions, which are shown schematically
Fig. 1. The regionsN andNS contain a liquid crystal, with
the regionNS, of thicknessj, containing the surface pola
layer. The regionS ~for substrate! does not contain a liquid
crystal. The entropic contribution to the free energy is
ways local. The energetic contribution, however, is nonlo
and contains~a! terms that couple these regions~in the case
of N andNS) and ~b! counterterms that compensate for t
incomplete interaction between the liquid crystal and the
uid crystal that is not present in the substrate. The coun
terms are added to the bulk liquid crystal free energy t
continues right up to the interface. Substitution of Eq.~A1!
into Eq. ~15! yields
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FN5FI1rkBTVE dvE dv f b~v!lnf b~v!2rkBTjsE dv1@ f 1s~v1!lnf 1s~v1!2 f 1b~v1!lnf 1b~v1!#

1
1

2
r2kBTsE

0

`

dz1E
0

`

dz2E d2r12'E dv1dv2C2~v1 ,v2 ,r12! f b~v1! f b~v2!

2
1

2
r2kBTsE

0

j

dz1E
0

j

dz2E d2r12'E dv1dv2C2~v1 ,v2 ,r12!@ f s~v1!2 f b~v1!#@ f s~v2!2 f b~v2!#

2r2kBTsE
0

`

dz1E
0

j

dz2E d2r12'E dv1dv2C2~v1 ,v2 ,r12! f b~v1!@ f s~v2!2 f b~v2!#. ~A2!

Here the coefficientj in the third term of Eq.~A2! comes from the integration of the step functionQ(z2j) over z.
We note that the direct correlation functionC2(v1 ,v2 ,r12) depends on the differencez12z2. Thus it is reasonable to

change the variables fromz1 ,z2 to z12,z1. The integrals overz1 can be taken explicitly because only the limits of integrati
in Eq. ~A2! depend onz1 after the change in variables.

Now the fourth term in Eq.~A2! can be split into bulk and surface contributions

1

2
r2kBTsE

0

`

dz1E
0

`

dz2E d2r12'E dv1dv2C2~v1 ,v2 ,r12! f b~v1! f b~v2!

5
1

2
r2kBTsE

0

`

dz1E
2`

`

dz12E d2r12'E dv1dv2C2~v1 ,v2 ,r12! f b~v1! f b~v2!

2
1

2
r2kBTsE

0

`

dz12E d2r12'E dv1dv2z12C2~v1 ,v2 ,r12! f b~v1! f b~v2!, ~A3!

where we have taken the integral overz1 in the second term of Eq.~A3!. The first term in Eq.~A3! is a contribution to the bulk
free energy that is proportional to the thickness of the sample. By contrast, the second term is the surface free ener
was derived by Sen and Sullivan@3#. This term is the counterterm linking the regionsN andNSwith S in Fig. 1.

In a similar way one can transform also the last two terms in Eq.~A2!. These terms contain the coupling betweenNSand
itself andNS andN. If j.r c

0 these terms can be written as

2
1

2
r2kBTsE

0

j

dz1E
0

j

dz2E d2r12'E dv1dv2C2~v1 ,v2 ,r12!@ f s~v1!2 f b~v1!#@ f s~v2!2 f b~v2!#

'2
1

2
r2kBTsjE

2`

`

dz12E d2r12'E dv1dv2C2~v1 ,v2 ,r12!@ f s~v1!2 f b~v1!#@ f s~v2!2 f b~v2!#

1
1

2
r2kBTsE

0

`

dz12E d2r12'E dv1dv2z12C2~v1 ,v2 ,r12!@ f s~v12 f b~v1!#@ f s~v2!2 f b~v2!# ~A4!

and

2r2kBTsE
0

`

dz1E
0

j

dz2E d2r12'E dv1dv2C2~v1 ,v2 ,r12! f b~v1!@ f s~v2!2 f b~v2!#

'2r2kBTsjE
2`

`

dz12E d2r12'E dv1dv2C2~v1 ,v2 ,r12! f b~v1!@ f s~v2!2 f b~v2!#

1r2kBTsE
0

`

dz12E d2r12'E dv1dv2z12C2~v1 ,v2 ,r12!@ f b~v1!@ f s~v2!2 f b~v2!#. ~A5!

Finally, combining the surface contributions to the total free energy from Eqs.~A3!–~A5!, one obtains the expression for th
surface free energy of a polar nematic liquid crystal
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Fs /s5rkBTjE dv1@ f 1s~v1!lnf 1s~v1!2 f 1b~v1!lnf 1b~v1!#1
1

2
r2kBTE dv1dv2C̃2~v1 ,v2 ,r12! f 1b~v1! f 1b~v2!

1r2kBTE dv1dv2C̃2~v1 ,v2 ,r12!@ f 1s~v1!2 f 1b~v1!# f 1b~v2!2r2kBTjE dv1dv2C̃0~v1 ,v2 ,r12!

3@ f 1s~v1!2 f 1b~v1!# f 1b~v2!2
1

2
r2kBTE dv1dv2C̃2~v1 ,v2!@ f 1s~v1!2 f 1b~v1!#@ f 1s~v2!2 f 1b~v2!#

2
1

2
r2kBTjE dv1dv2C̃0~v1 ,v2!@ f 1s~v1!2 f 1b~v1!#@ f 1s~v2!2 f 1b~v2!#, ~A6!
ith

ac
ol

n

h
ch

-
-

nd
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ed
nts
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n
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nge
ract
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e

l

is
-

with

C̃2~v1 ,v2!5E dr12V~r12•ê!C2~v1 ,v2 ,r12! ~A7!

and

C̃0~v1 ,v2!5E dr12C2~v1 ,v2 ,r12!, ~A8!

wherej.r c
0 is the thickness of the surface polar layer, w

r c
0 the direct correlation radius.

APPENDIX B: LONG-RANGE PART
OF THE ELECTROSTATIC INTERACTION
AND THE SURFACE ELECTRIC FIELD

In the molecular field approximation the average inter
tion between permanent molecular dipoles and quadrup
can be written as

Uel5
1

2
r2E @Vdd~1,2!12Vdq~1,2!1Vqq~1,2!#Q~j122r 12!

3 f 1~1! f 1~2!d~1!d~2!, ~B1!

whered(1)5dr1dv1 specifies both the positionr1 and the
orientation v1 of the molecule 1. The step functio
Q(j122r 12) represents the steric cutoff andj12 is the mini-
mal distance of approach for two molecules 1 and 2. T
functionQ(j122r 12)50 when the molecules penetrate ea
other ~i.e., when r 12,j12) and Q(j122r 12)51 otherwise.
The dipole-dipole interaction potentialVdd(1,2), the dipole-
quadrupole potential Vdq(1,2) and the quadrupole
quadrupole potentialVqq(1,2), are given by the familiar ex
pressions

Vdd~1,2!5m1aTab~r12!m2b ,

Vdq~1,2!5m1aTabg~r12!q2bg ,

Vqq~1,2!5q1abTabgd~r12!q2gd , ~B2!

with

Tab•••n5¹a¹b•••¹n

1

r 12
, ~B3!
-
es

e

wheremW 1 is the permanent dipole of the molecule 1 a
q1ab is the molecular quadrupole tensor.

At large separation the integral in~B1! diverges for the
dipole-dipole potential, while at short distances the effect
interaction potential in~B1! vanishes due to the steric cutof
It is convenient to separate between the short-range and
long-range parts of the effective electrostatic potential. T
separation procedure was proposed by Ewald long ago@26#
in the dielectric theory of crystal lattices. We have appli
the same idea to the description of polar polymer solve
@39#, but it is standard in the literature, particularly o
charged fluids@25#. The short-range contribution is take
into account in the statistical theory in the usual wa
whereas the contribution from the long-range part redu
exactly to the expression for the energy of the average e
tric field in the volume of the body. This energy gives a
additional contribution to the total free energy of a po
sample and is determined by the boundary conditions
sample shape.

In order to separate between the short- and long-ra
parts of the total electrostatic potential let us add and subt
the same average of the ‘‘pure’’ electrostatic interaction p
tential, without the steric cutoff. Equation~B1! can then be
rewritten as

Uel5Ushort1U long, ~B4!

with

Ushort5
1

2
r2E @Vdd~1,2!12Vdq~1,2!1Vqq~1,2!#

3@Q~j122r 12!21# f 1~1! f 1~2!d1d2, ~B5!

U long5
1

2
r2E @Vdd~1,2!12Vdq~1,2!1Vqq~1,2!#

3 f 1~1! f 1~2!d1d2. ~B6!

The quantityUshort is now the average of the effectiv
short-range potential Veff(1,2)5@Vdd(1,2)12Vdq(1,2)
1Vqq(1,2)]@Q(j122r 12)21#. This is only nonzero at smal
intermolecular separationsr 12,j12,L, whereL is the mo-
lecular length.

The long-range part of the initial electrostatic potential
represented by Eq.~B5!. This contribution represents the en
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ergy of the average electrostatic field in the medium and
be expressed in terms of the average polarizationP. This is
given by

Pa~r !5r@^ma&2¹b^qab&#, ~B7!

where^da& and^qab& are the average dipole and quadrupo
densities, respectively. The average of the long-range pa
the electrostatic interaction potential is now

U long5
1

2
r2E @Vdd~1,2!12Vdq~1,2!1Vqq~1,2!# f 1~1!

3 f 1~2!d1d2

5
1

2E dr1dr2Pa~r1!Tab~r12!Pb~r2!. ~B8!

This is more conveniently described in the Fourier repres
tation

Uel52pE dk~Pk•k!~P2k•k!k22. ~B9!

In a medium without an external field the average pol
ization P is related to the macroscopic electric fieldE by
static Maxwell equations“•D50 and“3E50, where the
inductionD5E14pP. These equations yield the simple r
lation between the electric fieldEk and the longitudinal par
of the polarizationPk ,
ev

o-

n

n

of

n-

-

Ek524pk~k•Pk!k
22. ~B10!

Finally, substituting Eq.~B9! into ~B8! yields the familiar
expression for the energy of the electostatic field

Uel5~8p!21E dk~Ek•E2k!. ~B11!

Equation~B10! is slightly modified if one takes into con
sideration not only the electrostatic interaction between p
manent multipoles but also the polarizability of the mediu
@18#. In this case the average electrostatic energy depend
the dielectric tensoreab ,

Uel5~8p!21E dk~Ek•e•E2k!. ~B12!

Thus we conclude that the free energy of a fluid with lon
range electrostatic intermolecular interactions can be ca
lated using the effective short-range potent
Veff(1,2)5Vel(1,2)@Q(j122r 12)21#. The energy of the av-
erage electric field in the medium, which represents the
erage long-range part of the electrostatic intermolecular
teraction, must be added to the free energy at the final s
and must be taken into account in the minimization of t
total free energy with respect to the polarizationP.
ys.
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@1# B. Jérôme, Rep. Prog. Phys.54, 391 ~1991!.
@2# T. J. Sluckin and A. Poniewierski, inFluid Interfacial Phe-

nomena, edited by C. A. Croxton~Wiley, Chichester, 1986!,
Chap. 5.

@3# A. K. Sen and D. E. Sullivan, Phys. Rev. A35, 1391~1987!.
@4# B. Tjipto-Margo and D. E. Sullivan, J. Chem. Phys.88, 6620

~1988!.
@5# P. I. C. Teixeira and T. J. Sluckin, J. Chem. Phys.97, 1498

~1992!.
@6# P. I. C. Teixeira and T. J. Sluckin, J. Chem. Phys.97, 1510

~1992!.
@7# M. A. Osipov and S. Hess, J. Chem. Phys.99, 4181~1993!.
@8# M. M. Telo da Gama, Mol. Phys.52, 585, 611~1984!.
@9# H. Kimura and H. Nakano, J. Phys. Soc. Jpn.54, 1730~1985!;

55, 4186~1985!.
@10# P. Guyot-Sionnest, H. Hsiung, and Y. R. Shen, Phys. R

Lett. 57, 2963~1986!.
@11# A. Mochizuki, W. Sotoyama, S. Tatsuura, T. Ishitsuka, K. M

toyoshi, and S. Kobayashi, Jpn. J. Appl. Phys. Lett.30, L504
~1991!.
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