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Influence of permanent molecular dipoles on surface anchoring of nematic liquid crystals
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We consider the ordering of molecular dipoles at a nematic surface and the influence of this ordering on the
equilibrium director orientation and the anchoring energy. Both phenomenological and molecular approaches
are used. We show that a thin, spontaneously polarized layer will appear even at a structureless nematic surface
without any charged impurities or gradients of the order parameter. The ordering of molecular dipoles in this
layer is determined by strong dipole-quadrupole interactions, modified by the presence of the surface. Surface
polarization gives a significant contribution to the anchoring energy of nematic liquid crystals composed of
strongly polar molecules. The estimates indicate that in such systems the dipolar contribution is very large and
could even be predominant, for example, at a free surface of some nematic liquid crystals. We show also that
in the case of large longitudinal dipoles the equilibrium director orientation at a free surface is homeotropic. In
the case of large transverse dipoles the alignment is planar. The principal results of this study are consistent
with experimental observations on ferroelectric layers at nematic interfaces and with data on the orientation of
typical polar nematics at a free surfa¢81063-651X97)01801-1

PACS numbes): 61.30.Gd

[. INTRODUCTION plications possess large longitudinal or transverse dipoles.
Symmetry considerations permit molecular dipoles to be or-
Surface properties of nematic liquid crystals attract mucrdered at a surface, and indeed spontaneous polarization in a
attention for both fundamental and technological reasons. Otin boundary layer of a nematic liquid crystal has been ob-
the one hand, a liquid-crystal interface poses several interesserved experimentallyl0—13. This surface polarization can
ing problems in the general theory of anisotropic nonuniformmake an important contribution to the surface free energy of
fluids. Experimentally, one observes various kinds of surfac& nematic liquid crystal because the dipole-dipole interaction
ordering and surface transitiofsee[ 1] for a review that are ~ €nergy is very strong in the case of large molecular dipoles.
far from being understood Comp|ete|y_ On the other hand, thé{ve shall see below that the “dipolar” contribution is at least
surface anchoring of nematic liquid crystals plays a vital rolecomparable to all other contributions or even can be pre-
in the fabrication of liquid-crystal display devices, which dominant for some nematic liquid crystdkuch as cyanobi-
make use of thin nematic cells. The delicate control of thePhenyls with very large dipoles.
surface parameters of such cells is impossible without an The only attempt to take the surface dipolar effects into
understanding of the general microscopic mechanisms thaccount of which we are aware was made by Par$tak
determine the surface anchoring of nematic liquid crystals. many years ago. Later McMullefl5] also considered the
The phenomenological theory of the surface properties oflipolar gradient terms in the free-energy expansion specific
nematic liquid crystals was developed by Sluckin and Poio the diffuse nematic-isotropic interface. According to Par-
niewierski[2] and by Sen and Sullivaf8]. This approach Sons, the free energy of the nematic surface can be written as
has been complemented by microscopic theories developed
by several authors using different approximati¢ds9]. In Fs=acosd +bcos'd, (1)
spite of some discrepancies between the results of different
authors, it has been found that short-range steric and van dehere ¥ is the tilt angle of the nematic director with respect
Waals interactions result in the equilibrium planar orienta-to the surface normal. The first term in Eg) comes from
tion of a nematic at a free surface. By contrast, long-rangé¢he coupling between the surface polarizatiband the sur-
guadrupole-quadrupole interactions can compete with shorface electric fieldE, while the second term is claimed to be
range potentials, and for sufficiently large quadrupoles theréetermined by quadrupolar interactions.
is the possibility of a tilted orientation or a temperature- The simple surface free enerfl) was used by Parsons to
induced planar-homeotropic surface transitiérb). describe planar to homeotropic transitions at the nematic sur-
In real liquid crystals one also finds some strong intermoface. In this description, the two terms () compete with
lecular interactions that have not been taken into account ieach other and possess a different temperature dependence,
the existing microscopic theoryd—9]. In particular, many thus leading naturally to the possibility of temperature-
nematic liquid crystals used in experimental studies and apnduced anchoring transitions. The essence of this argument
is as follows. Dipolar and quadrupolar contributions to the
surface energy can be qualitativelgnd obviously distin-
*Permanent address: Institute of Crystallography, Russian Acadguished using symmetry criteria; dipolar terms are of the
emy of Sciences, Leninski prospekt 59, 117 333 Moscow, Russiaform cos), whereas quadrupolar terms take the form
"Present address: Department of Electronics and Computer Sctosd. The problem with this approach is that in equilibrium
ence, University of Southampton, Southampton SO17 1BJ, U.K. the absolute value of surface polarization can also depend on
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the tilt angled. In fact, we shall see below that the compo- ments, would be the integrated polarization per waria

nent of polarization parallel to the director is always propor-P* =P£. Although there have been speculations about the
tional to cog). Now the two terms on the right-hand side of existence of a spontaneously ordered polar nematic phase, in
Eq. (1) possess the same general structure after minimizatioreal nematic liquid crystals the polarization is confined to a
and surprisingly one cannot single out the dipole contribuvery thin boundary layer of microscopic thickness. We shall
tion using the naive symmetry categorisation suggested bgonsider only systems th&h) possess zero polarization in
Parsons. the bulk and(b) are not close to a ferroelectric phase transi-

In this paper we consider the appearance of surface polation. In these cases the typical length scale of the polarization
ization and its influence on the surface anchoring of nematiclecay must be of the order of the molecular length. This
liquid crystals using both phenomenological and densityimeans that all polarization is concentrated in a very thin
functional approaches. The phenomenological descriptiofayer of thickness and contributes only to the surface free
will be developed in Sec. Il and the molecular theory in Secenergyf,, which actually comes from averaging over this
[ll. In Sec. lll we investigate the microscopic origin of the thin boundary layef3]. However, we note that this conclu-
dipolar ordering in a thin boundary layer of a nematic liquid sion is invalid for a broad nematic-isotropic interface. In this
crystal near a flat, structureless, charge-free surface. In Secase the dipolar effects are determined by the slow gradients
IV there is a brief discussion of the significance of our re-of the polarizatio15]. By contrast, the length scale of the
sults. Some more mathematical details have been relegategmatic order parameter variations near the surface is gener-
to the Appendixes. ally much larger than the molecular length because it is in-

In Sec. Il we have developed a microscopic statistical-versely proportional tax(T—T*), whereT* is the nematic-
mechanical approach to the problem of surface dipolar interisotropic transition temperatufé.9].
actions in a nematic liquid crystal. We show that the spon- Now the free energy of the polar nematic surface can be
taneous polarization in such a boundary layer is caused bgxpanded in powers of the polarization
the interaction between permanent molecular dipoles and
guadrupoles. This interaction is averaged out in the bulk, but 1
gives a significant contribution when the interacting mol- fs=fo(Q)+(M-P)+ 5(P-W-P), (2
ecules are close to a flat surface. In this case the surface
polarization is induced by an inhomogeneous distribution of 0 _ _
molecular dipoles and quadrupoles at the surface. wheref (Q) is the free energy of the nonpolar nematic sur-

The simple molecular theory permits estimates of the diface discussed in detail {2,3]. In Eq.(2) M has the mean-
polar contribution to the total anchoring strength of a nemIng of some effective surface field and the ten®éris the
atic at a flat surface. It will be shown that this contribution isinverse surface dielectric susceptibility. In the simplest case
rather large and could even be predominant, for example, 4f€ vectorM is just the electric field due to surface charges
a free surface of cyanobiphenyl-type nematic liquid crystals[20,21, i.e., M= —Eo. On the other hand, it will be shown
We shall also see that large molecular dipoles have a strorlj Sec. Il that there is an effective surface fiéltleven in
tendency to be normal to the surface. Thus, in the case dhe simple case of a structureless charge-free flat wall. This
large longitudinal dipoles the director orientation at a free€ffective field is determined by the discontinuity in the aver-
surface is expected to be homeotropic, whereas in the case 8§€ molecular quadrupole density at the flat surface.
large transverse dipoles it must be planar. The general expressid@) follows by symmetry; any sur-

In addition to the effects we discuss in detail, we mentionf@ace must produce some polarity since the symmetry plane
two other possible electric-field effects at the nematic surParallel to it is removed. The parametevs and W in (2)
face. The first is related to the field caused by charged im&lso can be expanded in powers of the nematic order param-
purities adsorbed at the surfafg6]. The other is the so- ©eterQ by exact analogy with the case of a nonpolar nematic
called order electric effect, which involves the appearance o$urface[2,3]. In the general case the tensor order parameter
a polarization proportional to the gradient of the averageQag IS biaxial near the surface, but this biaxiality appears to
quadrupole density near the surfafk7,18. We discuss Pe small[22] and, like previous authoigl—9], we shall ne-
briefly the relative importance of these effects in Sec. Iv. glect it here. Now the tensor order parameter can be written

in the formQ = n,Ng—(1/3)d,4], wheren is the nem-
atic director ands is the scalar order parameter. In this case
Il. PHENOMENOLOGICAL DESCRIPTION the surface fieldM and the tensoiWW depend only on the
OF SURFACE POLARIZATION surface normalé and the nematic tensam,nz and can
readily be written in the general form. For example, there are
only two independent contributions to the surface fibld
that can be composed frone and n,ng: mé and
m,n(e-n). In the general case the coefficiems and m,

Let us consider a nematic liquid crystal in contact with a
structureless flat surface lying in theOy plane. The free
energy of such surface for nonpolar nematics has been co
sidered in detail by Sluckin and Poniewierg®] and Sen O
and Sullivan[3]. In the case of nematic liquid crystals com- can depend on c68=(f-§)*. .
posed of polar molecules one also has to take into account F.rom symmetry reasons the effective ;urface fidland
the surface polarizatioR, which is an independent thermo- the inverse susceptibilitV can now be written as
dynamic quantity. In all calculations in this papBris a . R
quantity per univvolumeand is supposed to be constant over M=m;e+myn(n-e) ()
the dipolar layer of thicknes§. A related quantity, which
might turn out to be more easily measurable in some experiand
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W, 5=0180p51 028,85+ J3N,Npt da(€angtegn,)(N-€), and
4

where (1-€)=cos? and ¢ is the tilt angle of the directon AF ()~ —Wgcos 9+ const,
with respect to the surface normal We emphasize that in

the general case the effective surface figlds not parallel |\ here

to the surface normaé and the main axes of the inverse

surface susceptibilityV, ; are not parallel to eithee or n.

Only in the case of homeotropic alignmet is the nematic Woe m? mi 11
surface characterized by a symmetry axis parallel to the sur- 0" 2(g,+9s) 201
face normal.
Substituting Egs(3) and (4) into Eq. (2), we obtain the
expression for the surface free energy We note that the sign of the anchoring strendth is deter-

mined by the balance between the two terms in&d). The

first term is proportional to the coefficiemt, which deter-

mines the surface polarizatid?) parallel to the director. The

second term in Eq(1l) is proportional to the coefficient

m,, which determines the transverse polarizatiyn Thus

the anchoring strengtfV/, appears to be positive or negative

) depending on the balance between the tendencies of longitu-

+(92+9g4)sindcosiP P, , (3 dinal and transverse molecular dipoles to be perpendicular to
the surface, respectively. In the case of large longitudinal
dipoles the polarizatio?, <P and m>n;l. Then the an-

_ choring strengtiW, is positive withWy~m-</2(g,+g,). We
g”—g2005219+g3+2g4co§1‘7‘. © thus conclude thaot the ordering of p;)ermanent molecular lon-
HereP)= (P- A) is the component of the surface polarization gitudinal dipoles at a flat nematic surface promotes homeo-

along the director an®, =|P—A(P-7)| is the component (ropic director alignment.
perpendicular to it. Minimization of this free energy then N this section we have developed an elementary phenom-

yields the expressions for the components of the equilibriun‘?”c"ogical theory. It indic;ate; that, at a flat struqtureless sur-
surface polarization face, a net surface polarization due to the ordering of perma-

nent longitudinal molecular dipoles promotes homeotropic

1
AFy(P)=(my+my)Pjcosd+myP, sind + 5 gs Pf+P?)

1 1

with

Py=cosd{ — (my+m,)(g; + g,Sind) director alignment. However, at this stage we are not yet able

to predict the magnitude of this effect. To calculate how

+my(gy+ga)Sint 9o (D), (7)  large the dipolar contribution to the total anchoring strength

of a nematic liquid crystal is, as compared to other contribu-

P, =sind[ —my(g,+9g)) +(my+my)(go+ g4)coS 9] o (D), tions, we must resort to a molecular theory. This theory must

(8) be able to predict the coefficients of the phenomenological
. theory in terms of molecular model parameters. This theory
with will be developed in Sec. III.

o(9)=[— (g1 +9g,sirt9)(g;+9y)

—(gp+g4)%sirfdcogd] L. 9) ll. MICROSCOPIC APPROACH

A. Preliminary comments

Note thatP|xcosd and P, «sind. This means that the first
two terms in Eq(5) give similar contributions to the surface
free energy, which now have the symmetry of ahs

Substituting Eqs(7)—(9) into Eq. (5), one can obtain an
expression for the surface free enerty¥4(J), which ap-
pears to be a complicated function of the tilt angle This
expression, however, can be simplified if we assume that th
main axes of the inverse surface susceptibility tenagy,
are determined mainly by the director This assumption is
obviously correct in the bulk. By making it also for the sus
ceptibility of the surface layer we assume, in fact, that th
susceptibility is affected only weakly by the surface. In this
case(which corresponds to high values of the nematic orde
parameter and to large longitudinal dipglése coefficients
géti?ndsgs are much larger theg, andg,. In this case one f,(r,8)="fo(r,3)+3(&p)+- -, (12)

In the general case the polar nematic liquid crystal is de-
scribed by the one-particle distribution functidq(w,r),
which depends on molecular positiorand orientatiorw. In
this paper we use the simple model of a uniaxial molecule
with the longitudinal dipolew . In tpis case the distribution
gjnction depends on the unit vectarin the direction of the
long molecular axes. The nematic ordering is characterized
by the tensor order paramet@,z=([a,az— (1/3)d,4]).
_where the angular brackets denote the statistical average. The
grolar ordering is described by the polar order parameter
p=(a) and the polarization is given bly=pu(a), where
p is the number density. If the polarization is weak, the dis-
tribution function can be approximately expressed as

Pj~—m(g;+gs) 'cos?, P,~-mg;’sind, (10)  wherefy(1) is the distribution function of the nonpolar state.



55 INFLUENCE OF PERMANENT MOLECULAR DIPOLES ON ... 467

The description of the polar nematic liquid crystal is par-axis is normal to the plane of the surface. The higher-order
ticularly simple in the limiting case of the perfect ordering of terms in Eq.(15) depend on higher-order direct correlation
the long molecular axes. In this approximatiapas=n,n;  functions.
and the distribution function depends only on the classical The general free energyl5 can be used in the
spin-like variablep= * 1 specifying the direction of the lon- description of surface effects if one can separate between the
gitudinal dipole x along the nematic axis. Thug= »n bulk and surface parts of the total free energy of the sample.
and  fy(r,3)=f,(r,7). For small homogeneous Tiipto-Margo and Sullivar{4] and Teixeira and Sluckifb]
polarization have performed this separation with the help of the Fowler

approximation [24], which assumes that the density
1 and the nematic order parameter near the surface are equal to
f(p)=1+Znp(n)+---, (13  their bulk values. In the case of a polar nematic surface,
2 however, one has to take into account that near the
surface the one-particle distribution functidi(w,z) de-

where the averagén) is related to the polarization pends also on the polarizatidh which is confined to a thin
boundary layer. In this case we shall make a simple gener-

A lization of the Fowler roximation. W me th
P=pu( A, (14 @ ation of the Fowler approximatio e assume that

density and nematic order parameter are still equal to their
bulk values, but there exists in addition a thin surface layer
of thickness¢ with homogeneous average polarizatiBn
B. General results In this model the one-particle distribution function
The microscopic theory of the nematic surfacefi(®,z)="fi5(w) when 0<z<§ andf;(w,z)="f;,(w) when
uses the density-functional approd@8,7] to the theory of £<z. Here fi,(w) is the bulk orientational distribution
liquids. The density-functional theory of liquid crystals function of a nematic andi;s(w) is the orientational distri-
relies on the representation of the free energy as a function&ution within the surface polar layer. We note ttigi(w) is
of the one-particle distribution functiori,(r,»), which  different fromf, () because the latter depends on the sur-
depends on the position and on the orientatiom of the  face polarizatiorP.
molecule [23]. The general structure of this functional  The total free energyl5) can now be represented as a
is not known, but the functional derivatives of the free en-sum of two terms
ergy are related to the direct correlation function of the me-
dium. The expression for the free energy of the nematic
phase can then be obtained by means of an expansion Fn=Fp+Fe. (16)
of the free energy of the nematic liquid crystal around its
value in the isotropic phad@3]. This expansion is, in fact,
a generalization of the usual Landau—de Gennes expansion ) o
in terms of the order parameter. HereF, is the bulk free energy of the sample, which is given
In the case of a flat structureless surface the nematifY
can be assumed to be homogeneous in thg)( plane
parallel to the surface. In this case the one-particle
distribution function depends only on the distance from 3
the surfacez: fi(r,0)=f;(w,z). The free energy of Fb:f d°rfy(r), 17
a semi-infinite nematic sample at densitp and
temperaturel can now be written approximately as

with
FN/U=F|/0'+pkBTf dwf dzf(w,2)Infi(w,2)
0

1 fb(r)zpkBTJ da)f dofy(w)Infy(w)
- EpszTf dwldwgf dzlf d22
0 0

1
- EPZkBTf d3r12f dw1dw,Ch(wy,w5,1 1))

X f dX;0Y1,Co( w1, 05,M12)Af1(w1,24)
Xfp(wq) fp(wy). (18)

XAy (wp,25)+ - - -, (19

In the thermodynamic limit the bulk free ener§y, is pro-
wherex,=X; —X», Y12=Y1— Y2, F, is the free energy of the portional to the sample volume.
isotropic phase, o is the surface area, The second term in Eq16) is the free energy associated
Afi(wq,21)=F1(w1,27) — L4 , Cy(1,2) is the two-particle  with the nematic surface. As shown in Appendix A, it can be
direct correlation function of the isotropic phase, and the written approximately as
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1 ) _
Folor=pkoTE [ donlfra(o)iNfas(r) ~ fap(or)nf(0n) ]+ 5p%oT [ dosdoCator,07.1 5 fan(op)fan(02)
+P2kBTJ dwldWZEZ(wlvw21r12)[f15(w1)_flb(wl)]flb(wZ)_pszTgf dwldeEO(“’liw2’r12)[fls(wl)
1 ) _
—fip(w1)1f1p(w2) — §P kBTf dw1dw,Ch(wy,wo)[ f1s(wr) — Fip(w1) ][ F1s(w2) — F1p(wy) ]

1 _
- §P2kBT§f dwdw,Co(wq,wo)[ Frs(w1) = Fip(@q) [ F1s(w2) — Fip(w2)], (19

with lar interaction. We shall see later that the most important
such interaction is between permanent molecular dipoles and
quadrupoles. However, the electrostatic dipole-dipole and
dipole-quadrupole interactions are long range. These terms

(20 produce well-known difficulties in statistical theory of fluids
(see, for exampldg25]). In the present case one finds formal

Ez(wl,wz):f dr1,0(r12-€)(rip©)Ch(wy, w3, 1)

and difficulties in evaluating the integral in E¢20).
At large intermolecular separation the asymptotic expres-
Eo(wl,wz):f dr1,Co( @y, ®5,r 1), (21 sion for the direct correlation function isCy(1,2)

=-V,(1,2) kgT, whereV,(1,2) is the long-range part of the
pair interaction potential. Then at large the integral in Eq.

(20) is convergent only conditionallgi.e., the result depends
on the order of integrationwhen V(1,2) is the dipole-
quadrupole interaction potential proportionalr@“. Similar
problems appear in the calculation of lattice sums in the di-
electric theory of polar crystal26], and the general method

to overcome these difficulties was proposed by Ewald long
ago [27]. In the context of the statistical theory of polar
fluids this method corresponds to the separation between the
short-range and long-range parts of the electrostatic potential

Where§>r2 is the thickness of the surface polar layer, with
rg the direct correlation radius. Hef(r ;,- €) is a step func-
tion: O@(x)=0 if x<0 and®(x)=1 if x>0.

Note that the last four terms in E¢19) depend on the
difference between surface and bulk one-particle distribu
tions f4(w) — f1p(w), where the surface distribution func-
tion f15(w) depends on the surface polarizatienin a nem-
atic liquid crystal composed of uniaxial molecules with
longitudinal dipoles, the one-particle distribution function in

the polar surface layefs(w;)="f1((& ﬁZZ’(ér P)). BY  pefore applying the formal density-functional thepiy,2§.
contrast, the bulk distributiofys(w,) = fl((.al' n)?). . Then the short-range part of the potential can be taken into
The free energy of a nonpolar nematic surface is repreac.qnt in the usual way. The long-range part of the electro-
sented by the second term in EQ9). This contribution,  giaic interaction determines the energy of the average elec-
which depends only on the nematic order param@gg, yic field, which depends on the shape of the sample. These
was first derived by Tijpto-Margo and Sullivd#] and has 4 estions, together with the actual separation procedure for
been discussed extensively befprg. The first term and the e present case, are discussed in more detail in Appendix B.
last four terms in Eq.(19) represent the polarization- the energy of the average electric figlshich is related to

dependent part of the free energy that is under consideratiqpo polarization by Maxwell equationin the surface layer
in the present paper. At small polarization the difference.;n pe written afsee Eq(B9)]

f1s(w) — f1p(w)ocP and the third and the fourth terms in Eq.

(19) are linear inP. These terms correspond to the second

term (M-.P) in the phgnomenolo.gical expressiéa). Thg Ue|=277f dk(Py-K)(P_,-k)k 2. (22)
first, the fifth, and the sixth terms in EQL9) are quadratic in

polarizationP and correspond to the second term2.

Different terms in Eq(19) have slightly different origin. In the case of a flat nematic surface the surface polarization
We note that the first, the fourth, and the sixth terms areP depends only on the distaneealong the surface normal
proportional to the thickness of the surface layerThese e Hencek=eék and Eq.(22) can be simplified, yielding
terms have the meaning of an extra free-energy density in the
surface layer multiplied by the volume of the layer. By con-
trast, the second, the third, and the fifth terms are not pro- Ue|=277f dk(Py- &) (P_y-@).
portional to the layer thickness. These contributions are, in
fact, nonlocal as they cannot be represented as an integral
over the surface layer volume. As a result, they contain af his electrostatic energy, located in the surface polar layer,
extra power ofr 1, under the integral. makes an additional contribution to surface free energy and

The polarization-dependent contribution to the surfacemust be added to Eq19), which presents a contribution
free energy must be determined by some polar intermolecu¥om short-range forces.
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C. Perfect orientational order

469

D. Dipolar contribution to the surface free energy

A general expression for the surface free energy of a nem- Now let us estimate the quantitidd and W, in the
atic has been presented in Sec. Il. By performing an exparmolecular field approximation using some simple intermo-
sion in powers of the surface polarization, one can use thedecular interactions. In this approximation the direct correla-

expressions to estimate the quantitsandW,; in Eqg. (1)

tion function

for the phenomenological surface free energy. We make

these estimates for the simple case of a nematic liquid crystal
composed of molecules with longitudinal dipoles. In order to

simplify the calculations, we suppose that the long moleculal
axes in the surface region are perfectly ordered. This a
proximation will have only a minor quantitative, and no

qualitative, inaccuracy7].

In this approximation the one-particle distribution func-

tion of the surface layer is given by E(lL3). Substituting
Eq. (13) into the general expressida9) yields the equation

for the polarization contribution to the surface free energy

Fa/lo=(M-P)+(P-W-P), (23
with
1 L - -
MzngTMH A > 7l Ca(R, 71, 72) = ECo(, 71, 72)],
n1.7m2
(24)
1 e ~ .
Wep=— ngTM” Nafg > 71720 CoR, 71, 7,)
1.2
(A 1 -1,-2
_fco(n,ﬂl,ﬂz)]‘i“ngTfP T (25
where

Ez(ﬁ’m:ﬂz):f dr10(rip-©)(r1p-8)Cy(a1,8,r12)
(26)

and

Eo(ﬁ:ﬂl,ﬂz):J dri,Co(3y,8,,r12) (27)

for 3, =n», anda,=nv»,. The last term in Eq(25) is pro-
portional to the thickness of the surface polar lagefThis

term has the meaning of the “bulk” dielectric susceptibility

multiplied by &, while the first term in(25) is a surface
correction to the susceptibility.
We note that the polarizatioR vanishes ifM=0. One

Ca(1,2)=— (ko) "1V(1,200(r 15— k1),

here V(1,2) is the pair intermolecular potential and

O (r,— k1o is the steric cutoff factor that depends on the
molecular shape via the functior,(1,2). The function
k13 ,8,,0,,) depends on the relative orientation of the two
molecules and appears to be rather complicated. Fortunately,
there exists a simple interpolation expression proposed by
van der Meer and Vertogdi29]

1 A . . -
K12=D+§(L—D)[(a1~u12)2+(a2-u12)2]. (28)

This expression is exact for two specific relative orientations
of the two molecules, i.e., wheay | a,||U;, and &||a,L U5,
wherel;,="r1,/r15.

In a nematic liquid crystal composed of uniaxial mol-
ecules with longitudinal dipoles the interaction potential
V(1,2)=V(a,,r1,,8,) depends on the unit vectogs and
a, and on the intermolecular vectoy,. In the case of per-
fect nematic ordering, = 7,0, &= 7,N, and the pair poten-
tial depends only on the directar, intermolecular vector
r,, and the spinlike variables n,,7,: V(1,2)
=V(N,r 12,71, 7).

As discussed at the end of Sec. Ill C, a consequence of
Eq. (24) is that the vectoM is nonzero only if the potential
V(ay,r1,,8,) is polar with respect t@, and nonpolar with
respect ta, (i.e., it must be odd iny; and even ing,). In a
system of anisotropic noncharged molecules with large per-
manent dipoles the predominant interaction of this kind is the
electrostatic dipole-quadrupole interaction. In the case of
perfect nematic order this can be written as

Vod( 71, 72,F 19 = — Q71 75(R- Uy)

A 2
Pa(n-up) — g}
(29

whereQ is the molecular quadrupole. At the same time the
inverse surface susceptibility tensaW,, is determined
mainly by the electrostatic dipole-dipole interaction potential

2 N
Vdd( 77177721r12): - Fﬂﬁnlnzpz(nulz)
12

Now dipole-dipole and dipole-quadrupole interactions are
long range. Thus it is necessary to separate the long-range
parts of these electrostatic interaction potentiaée Appen-

dix B) and to use the effective short-range potentials in Egs.

can readily see from Ed24) that any nonzero contribution (26) and (27):

to M can come only from the direct correlation functi@nd

hence from the corresponding interaction potential that has

the same symmetjthat is odd inz; and even ing,. This is
equivalent to being polar with respect & and nonpolar

V§Z=qu(l,2)[®(rlz— K12)—1],

V& =V4a(1,2[0(r 15— K19 —11.

with respect toa,. On the other hand, the inverse suscepti-
bility W,z is determined by the correlation function that is We note that the effective dipole-dipole and dipole-
odd in both»; and 7. quadrupole potentials are nonzero only within the excluded
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volume for the two molecules, which is determined by thetential determines the energy of the average electromagnetic
inequalityr,< k1,. At the same time, the excluded volume field (see alsd38]) and will be added to the final expression

is isotropic forr;,<<D and therefore the corresponding con- for the surface free energy.

tribution vanishes after integration ovey, in Egs.(26) and Substitution of the effective dipole-dipole and dipole-
(27). Thus the quantitie®! andW,z are determined by the quadrupole interaction potentials into E¢®5) and (26)

dipole-dipole and dipole-quadrupole interaction potentialsyie|dS the expressions for the functioréz(l,z) and
for D<r,<kj,. As shown in Appendix B, the contribution Eo(l 2)

from the long-range parts of the electrostatic interaction po-

- ~ R o . L 2 L
Ca(R, 71,72) = = (kgT) J dUlz(2®(U12~e)'”(Klz/D)QMnm??%(e' Ug2)| Pa(R- lrp) =g | = 2ksauf 71 72P2(R- )
(30)
and
C(A -1 0 2 oo -1 2,2 non 2
Co(N,71,72) = —(kgT) dusaIn(x12/D) = 2uf 17172P2(N- U — K15 Quy 772.72(€- Und)]| Pa(n- Urp) — |, (32)
|
whereD is the molecular diameter. Equatio(8)) and (31) M~ — pQIn(L/D)A(A-8), (36)

depend on the function Ir(,/D). This function can be ap-

proximated similarly to Eq(28), o L- £ KT
W, z~—n,n +£&IN(L/D) |+ 5 —=38,5- (37)
A A aB al'B af
In&p/D~In(L/D)(N- lyy)2. 2 8 pu|
Substituting this expression into Eq80) and(31) and then E. Final estimates

into the general equation®24) and (26), one obtains, after

the summation over, and 7,, Comparing Egs(37) and(38) with the phenomenological

expressiong3) and (4), we obtainm,=—pQIn(L/D) and

5 R glzng/8p,uﬁ. The termm, e in Eqg. (37), the surface field
M=—5pQIN(L/D)nA,, (32 M, is absent and thereform;=0 in the present simple
theory. Accordingly, the termsg,€,8; and g4(€,ng
L—D ¢/ kT +egn,)(n-€) are absent in Eq(38) and thusg,=g,=0
W,z=—N,Ng A,+€In(L/ID)As|+= —2> Oup here. In the case of perfect nematic ordering and zero trans-
2 8 33 verse dipole the transverse polarizatiBn vanishes. Then
(33 the dipolar contribution to the surface free energy can be
where written as[see Eq.(5)]
T T T K - AF = myP 089+ = (g, + ga)P?
A1=fdu®(u-e)(u-e)(n.u)3§+P2(n-u) , s= M2 2917 93)F
with the equilibrium polarization
A= [ dio (@887 0P (i-u),
my
Pi=- cost
= gitgs
Aszjda(ﬁ.a)ZPZ(ﬁ.a). (34)

Finally, the dipolar contribution to the surface free energy

The coefficient®d\;, A,, andA; can readily be estimated for reads

small tilt angles9?<1. In this case one obtains

cogd. (39)

68

A~ 175

T 47
+0(9?), A2~Z+o(az), A3~1—5+o(ﬂ2).
Substituting the expressions for the coefficiemts,g,, and
(35
03, Obtained above, we obtain the estimate for the dipolar
We note that all coefficientd;, A,, andA; are of the order ~ contribution to the total
of unity. Therefore we present simple estimates for the quan- 522
tites M and W,z omitting all numerical coefficients of the 1 p“Q°In*(L/D) vp

order of one: AFS: - E [L+2§|n(L/D)]yD+§/8CO§ﬁ’ (39)
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where the dimensionless paramejgy= p,uﬁ/kT. polarization. This result is confirmed’ by experimental data
Equation(39) shows that the dependence of the anchoringobtained by Guyot-Sionnest al.[10], Jeomeet al.[12,13,
strength on the value of molecular dipole is determined byand Mochizukiet al. [11], who have observed a polar layer
the dimensionless paramet%:p,uf/kBT. This parameter at the nematic surface with a thickness of few molecular
is of the order of unity in the case of large molecular dipolesiengths. There is, in addition, indirect evidence of the exist-
(u)=4—5 D) characteristic of cyanobiphenyl liquid crys- ence of surface polarization in nematics. For example,
tals. For very large dipoles the dipolar contribution to theLavrentovichet al.[20] have observed some surface electro-
anchoring strength no longer depends on the value of theptic effects that have been interpreted as arising from sur-
dipole and reaches a saturation value that is approximateliace polarization and not from the flexoelectric effect.
given by Wy~[pQIn(L/D)[/2[L+28n(L/D)]. ~ Setting Surface polarization gives a significant contribution to the
p=2x10"" cm !, L=3X 107_7 cm, L=4D, £=2L, and  anchoring strength of a nematic liquid crystal composed of
Q=102 esu[30], we obtainWy~10"* ergcm 2. This  strongly polar molecules. For large longitudinal dipoles the
estimate shows that the dipole contribution to the surfacgiylar contribution favors homeotropic director alignment
free energy can be very large if the nematic liquid crystaly; the surface. The dipoles have a strong tendency to be
consists of molecules with large longitudinal dipoles. '”deedperpendicular to a structureless surface. The estimates per-

this estimate oWy is comparable to, or even larger than, the ¢, 0 i sec. 111 B indicate that the dipolar contribution is

typical anchoring strength of various nematic liquid crystals a1 P .
(Wo~102—103 erg cn?) [31-33. Even if we have very large Wy~10 " ergcm ©) and is comparable to, or

overestimated it in the context of the present qualitativeeven larger than, the typical values of the anchoring strength

theory, this is still an indication that the effect is strong; themeasurgd fqr various nematic |IQUI.d crystals. Thus the dipo-
longitudinal dipoles have a very strong tendency to alignIar contribution may even predominate, for example, at the
perpendicular to the structureless surface. frge surface of liquid crystals that possess strqngly polar ter-
We note that the above numerical estimates\éy are minal groups. The experimental data indicate indeed that cy-
valid in the case of large molecular dipoles. In the case oftnobiphenyl and oxycyanobiphenyl liquid crystaishich
weakly polar molecules, by which we meag<1, Eq.(39) have a strongly polar CN grouplign homeotropically at the

reduces toWy~[pQIn(L/D)Pppuf/LksT. This contribution free surfacd 34—-36. - _ o
vanishes when— 0. In the case of purely longitudinal dipoles the minimum of

the surface free energy39) corresponds to homeotropic
alignment of the nematic director. By analogy one may sup-
pose that for purely transverse dipoles the equilibrium orien-
IV. DISCUSSION tation of the director will be plandi.e., again the dipoles are

Both the phenomenological and the microscopic theorie®€rpendicular to the surfaceThis conclusion is also not in
presented in this paper predict that a spontaneously polariz&ntradiction with the existing experimental data. For ex-
layer will always be found at a nematic surface. This layer@MPple, the nematic para-azoxyanisole, with a moderate mo-
exists even at a structureless flat surface, in the absence §cular transverse dipole, has a planar orientation at the free
electric fields, charged impurities, or gradients of the ordefUrface[34], in contrast to cyanobiphenyls whose large di-
parameter. The appearance of the surface polar layer is pple seems to _force a homeotropic orlentatl(_)n_. Detailed cal-
formal consequence of the fact that a boundary between twgulations for this case, however, are more difficult.
different media destroys reflection symmetry with respect to W€ have presented numerical estimates Wgj. Our
the surface plane. This symmetry, by contrast, is unbroken ifualitative conclusions are valid as long as the molecular
the bulk system. The surface is not a mirror plane of thdipoles are suff|C|er_1tIy large. If the molecular dipoles are
system and thus a surface spontaneous polarizationamay Small, the problem is more complicated and cannot be de-
usually will) exist even when the polarization is absent in theScribed completely using the model we have developed in
bulk, a fact pointed out by Petrov and Derzhar{#]. This th|s paper. Now the molecular pql_arlzablllty gives a substan-
simple symmetry argument is almost obvious. The details ofial contribution to the susceptibility of a liquid crystal and
the actual microscopic mechanisms that induce the orderin_g"e polar part of the surface free energy cannot be calculated
of dipoles at the flat surface, however, are not similarly obPy considering only the ordering of permanent molecular
vious. In the molecular theory developed in this paper thlipoles. However, in thls_case the d|pol_ar contribution to the
surface polarization is caused by the electrostatic interactiofPt@l anchoring strength is relatively unimportant.
between permanent molecular dipoles and quadrupoles. The In this paper we have considered an interaction between
average dipole-quadrupole interaction vanishes in the bulk geermanent molecular dipoles and the structureless surface on
a simple fluid. By contrast, because a part of the interactio® tWo-body level. Clearly, some many-body effects can also
sphere is cut off by the surface plane, this contribution to thénake a contribution to the surface energy. Some of these
intermolecular potential gives a nonzefand large contri- ~ Many-body effects are represented on the macroscopic level
bution near the surface; this phenomenon is sometimely an interaction of the dipole with its image. At a free
known as the incomplete interaction at an interface. The avsurface the permanent dipo}le;, which makes an anglé
erage dipole-quadrupole interaction potential then becomeswith the surface normal, creates the image dipole
function of the angle between the average dipole and thew,~u.(e—1)/(e+1), wheree is the dielectric constant of
surface normal. In this way the terms linear in the polarizathe medium. The image dipole makes an anglerefé with
tion appear in the free energy expansion and, when the suthe surface normal. As a result, the interaction of the
face energy is minimized, one finds a spontaneous surfagdipole with its image can be estimated abgyq
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polar molecules, however, this conclusion may no longer
hold.

N In real nematic liquid crystals the nematic-substrate inter-
face may exhibit extremely complex phenomena. The sub-
strate can adsorb charged impurities from the solvent and

¥

NS $ these effective surface charges produce a surface electric
field[16,17], which then, in turn, can interact with molecular

S dipoles. The surface electric field can also be present on the

boundary between a nematic liquid crystal and the
Langmuir-Blodgett filn{41]. Whatever its origin, the surface
electric field can make a significant contribution to the an-

FIG. 1. Schematic division of space into the half planeon-  choring strength of the nematic. Its relative importance, how-
taining the bulk liquid crystal, the surface plahS containing a  €ver, depends crucially on the nature of the surface and on
polar liquid crystal, and the regio® without a liquid crystal. the concentration of charged impurities, which may strongly
vary from one nematic sample to another and thus not be
reproducible.

~u?(e—1)/(e+1)z 3cos®, where z is the distance
from the surface. This interaction will contribute to the total
anchoring energy of the liquid crystal if we assume
that the direction of the dipole is parallel to that of the direc-
tor n. Considering the dominant contribution from the
dipoles in the first molecular layer, we can estimate this con- M.A.O. was supported by SERCow EPSRQ under
tribution to the surface free energy to be Grant No. GR/H/93712 during his stay at the University of
AW~ pu?l~2(e—1)/(e+1), wherel is a molecular length Southampton. M.A.O. is grateful to INTAGrant No. 94-
L~2%X10"7 cm. 4078 and The Russian Fundamental Research Fund for fi-
For large dipoles this contribution can be of the ordernancial support. The authors are also grateful to Blandine
of 1 erg cmi 2, i.e., it is very large. We note, however, that in J&0me for interesting discussions.
this way one strongly overestimates the corresponding con-
tribution. In fact, the concept of an image dipole is valid only
for a macroscopic dipole embedded in a medium at a
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relatively large distance from the surface. In other words, APPENDIX A: SURFACE FREE ENERGY
there must be some “continuous medium” between the OF THE POLAR NEMATIC LIQUID CRYSTAL
dipole and the surface. This requires that distaneea, In the simple model of the polar surface discussed in Sec.

wherea is the typical dimension of the particles that com- || A, the distribution function of the nematic liquid crystal is
pose that medium. Thus one cannot apply this concept tdifferent in the polar surface layer of thicknegsnd in the
dipoles in the first or second molecular layers. Furthermorepulk, respectively. This distribution functioih (w,z) can be
at distancesz>L the interaction with the image dipole written as
appears to be much weaker and can be neglected in compari-
son with other contributions.

Finally, we discuss the relation between the phenomena fi(0,2)=0(z—§)[fs(w)—fh(w)]+T(w), (Al)
discussed in this paper and other polar effects at a nematic
surface. First, the nematic order parameter at the surface is
not equal to that in the bulk and there is some spatialvhere ®(x) is the Heaviside step functio®(x)=1 if
variation of the order parameter in a thin boundary layerx>0, and®(x)=0 if x<0. Heref,(w) andf¢(w) are the
Nematic liquid crystals are anisotropic and possess a nonzetnilk and surface orientational distribution functions, respec-
quadrupole densityQ,z)>S in the ground state. Then the tively.
spatial variation of the nematic order parameter near The total free energy is described by E@5). We can
the surface results in the nonzero average polarizatiodistinguish three regions, which are shown schematically in
proportional to the gradient of the quadrupole densityFig. 1. The regiondN andNS contain a liquid crystal, with
P=—-V-Q. This effect, known as order electricityl6], the regionNS, of thickness¢, containing the surface polar
has been discussed in detail elsewhgk®,37. The order layer. The regiorS (for substratg does not contain a liquid
electric effect favors a tilted director orientation at the freecrystal. The entropic contribution to the free energy is al-
surface. However, according to the estimates of R&8],  ways local. The energetic contribution, however, is nonlocal
the order electric contribution to the anchoring strength is ofand containga) terms that couple these regiofis the case
the order of 2103 ergcm 2 and should be much weaker of N andNS) and (b) counterterms that compensate for the
than the contribution from the ordering of permanent dipolesincomplete interaction between the liquid crystal and the lig-
We conclude that the contribution from the ordering of per-uid crystal that is not present in the substrate. The counter-
manent molecular dipoles dominates the order electric corterms are added to the bulk liquid crystal free energy that
tribution in nematic liquid crystals composed of strongly po-continues right up to the interface. Substitution of E&41)
lar molecules. For fluids made from nonpolar or weaklyinto Eg.(15) yields
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FN:FI+pkBTVJ’ dwf dwfb(w)lnfb(w)_pkBTfo'f dwq[f1s(wq)Inf1g(w1) = F1p(w1)INfip(wy)]
l o0 o0
+§p2kBT(Tf dzlf def dzrlaf dwldw2C2(w1,wz,rlz)fb(wl)fb(wz)
0 0
1 5 3 3 5
—5okaTo [ a2 [ "dz, [ Prua | dosdosCator, 0z (o)~ oo (02~ fu(02)]

© 3
_PZkBTO'fo dzljodzzf dzrlaf dw1dw,Co(wy, 2,1 12) fp(wp)[ fs(wz) = fp(wy)]. (A2)

Here the coefficieng in the third term of Eq(A2) comes from the integration of the step functi®rfz— &) overz.

We note that the direct correlation functi@y(w,,w»,r15) depends on the differencg —z,. Thus it is reasonable to
change the variables from ,z, to z;,,2;. The integrals ovez, can be taken explicitly because only the limits of integration
in Eqg. (A2) depend org, after the change in variables.

Now the fourth term in Eq(A2) can be split into bulk and surface contributions

1 0 0
S0%oTo | da [ "z, [ @i [ dosdonCator,on rfu(on s
1 5 © © )
=3P keTo Odzl ~ dzy,| d7ryp | do1dwColwq,wy,11) fp(wr) fp(wy)
1, * 2
5P keTo Odzlz dryp | dwdw;z1Co(wr, 0,119 fp(wr) fr(wsy), (A3)

where we have taken the integral ozgrin the second term of EGA3). The first term in Eq(A3) is a contribution to the bulk
free energy that is proportional to the thickness of the sample. By contrast, the second term is the surface free energy, which
was derived by Sen and Sullivq8]. This term is the counterterm linking the regidNsand NS with S in Fig. 1.
In a similar way one can transform also the last two terms in(Eg). These terms contain the coupling betwéés and
itself andNS andN. If £>r2 these terms can be written as

1 13 £
_EPZKBTUfodzlfodzzf dzfmj do;1dw;Ch(wy,wy,M1)[fs(w1) — Fu(w1) [ fs(ws) — frp(w,) ]
1 L
“_EPZKBTUSJ_WCIZRI dzrlaf do1dw,Co(wy,wz,M)[fs(@1) = Fp(w1) [[fs(w2) = fh(wy)]
1 S
+50kaTo | "z [ @iy [ dosdosziColon on il fon= ool fo) (@] (AD)

and

© 13
~pkoTo | “dz [ a2, | @i [ dosdo,Coln a0 ow2) - fo(w2)]
~—p2kBTo'§f7 lezf dzrlﬂfdwldwzcz(wlywzyrlz)fb(wl)[fs(‘UZ)_fb(w2)]
+PZkBTU'fO dzl2f dzrluf dw1dw;21,Co( w1, 05,1 1) fp(w1)[fs(wr) = fp(wy)]. (A5)

Finally, combining the surface contributions to the total free energy from B@—(A5), one obtains the expression for the
surface free energy of a polar nematic liquid crystal
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1 ) ~
Folor=pkoTE [ donlfra(oiNfas(n) ~ fap(on)infon)]+ 5p%oT [ dosdoCatwr,07.11 fan(on)fan(0:)
+PZKBTJ dwldwzaz(wlva1r12)[f15(w1)_flb(wl)]flb(wz)_szBTgf dwldw260(wlyw21r12)
1 ) _
X[ f1s(w1) = Fip(wq) 1f1p(wa) — EP kBTf dw1dw,Co(wy,wo)[ f1s(@1) = Fip(@q) [ F1s(w2) — Fip(ws)]
1 ) ~

5P kBng dw1dw,Co(wy,wo)[ f1s(wr) — Fip(w1) [ F1s(@2) = F1p(wy) ], (A6)

with where 1, is the permanent dipole of the molecule 1 and
J14p is the molecular quadrupole tensor.

At large separation the integral iB1) diverges for the
dipole-dipole potential, while at short distances the effective
interaction potential ifB1) vanishes due to the steric cutoff.

It is convenient to separate between the short-range and the

long-range parts of the effective electrostatic potential. This

EZ(wlawZ):fdrlZQ(rlz'é)CZ(wlvavrlz) (A7)

and

Eo(wlva):f dr,Co(wy, 5,112, (A8)

t
where§>r2 is the thickness of the surface polar layer, with [3

r the direct correlation radius.

APPENDIX B: LONG-RANGE PART
OF THE ELECTROSTATIC INTERACTION
AND THE SURFACE ELECTRIC FIELD

In the molecular field approximation the average interac
tion between permanent molecular dipoles and quadrupol

can be written as

1
Uelzzpzf [Vad(1,2 +2V44(1,2 +Vqq(1,2) ]O(§15—T12)
xf1(1)f1(2)d(1)d(2), (B1)

whered(1)=dr,dw, specifies both the position, and the

orientation w; of the molecule 1. The step function

O (&1, 1y represents the steric cutoff agg, is the mini-

separation procedure was proposed by Ewald long[agb

in the dielectric theory of crystal lattices. We have applied
he same idea to the description of polar polymer solvents
9], but it is standard in the literature, particularly of
charged fluids[25]. The short-range contribution is taken
into account in the statistical theory in the usual way,
whereas the contribution from the long-range part reduces
exactly to the expression for the energy of the average elec-
tric field in the volume of the body. This energy gives an
additional contribution to the total free energy of a polar
sample and is determined by the boundary conditions and

e§ample shape.

In order to separate between the short- and long-range
parts of the total electrostatic potential let us add and subtract
the same average of the “pure” electrostatic interaction po-
tential, without the steric cutoff. EquatigiB1) can then be
rewritten as

mal distance of approach for two molecules 1 and 2. The

function ®(£,,—r1,) =0 when the molecules penetrate each

other (i.e., whenr,<¢&;,) and @(&;,—r1)=1 otherwise.
The dipole-dipole interaction potentiglyy(1,2), the dipole-
quadrupole potential V44(1,2) and the quadrupole-
quadrupole potentia¥(1,2), are given by the familiar ex-
pressions

Vad(1,2 = p1,Tap(M12) og,
Viag(1,2) = u14Tapy(r12)d2sy »
qu(llz):qlaﬁTaByﬁ(rlﬂqZWSv (BZ)

with

1
TQ‘B“.V:VQVIB"'VVr_lz, (B3)

Uer= Ushortt U long s (B4)
with
1 2
Ushor=5 P f[Vdd(l.Z)+2qu(1.2)+qu(1,2)]
X[O(&1- 11 —1]f4(1)f4(2)d1d2,  (BY)
1 2
Uiong=359 | [Vao 1.2+ 2Vgq(12+ V(1.2
X f1(1)f1(2)d1d2. (B6)

The quantity Ug,o iS Now the average of the effective
short-range  potential Veq(1,2)=[Vg4(1,2)+2V44(1,2)
+Vqq(1,2)][O (&1, r12) —1]. This is only nonzero at small
intermolecular separations,<£,,<L, whereL is the mo-
lecular length.

The long-range part of the initial electrostatic potential is
represented by E@B5). This contribution represents the en-



55 INFLUENCE OF PERMANENT MOLECULAR DIPOLES ON ... 475

ergy of the average electrostatic field in the medium and can Ey=—4mk(k- pk)k—2, (B10)
be expressed in terms of the average polarizaiomhis is
given by
Finally, substituting Eq(B9) into (B8) yields the familiar
Po(r)=pl{sa) =V s{dap) ], (B7)  expression for the energy of the electostatic field

where(d,) and(q,z) are the average dipole and quadrupole

densities, respectively. The average of the long-range part of B 1
the electrostatic interaction potential is now Uer=(87) dk(BEx E-i). (B11)
Ulong=§P2J [Vad(1,2)+2Vq(1,2 + Voq(1,21f1(1) ~ Equation(B10) is slightly modified if one takes into con-
sideration not only the electrostatic interaction between per-

manent multipoles but also the polarizability of the medium

xT1(2)d1d2 [18]. In this case the average electrostatic energy depends on
1 the dielectric tensoe,,z,
:EJ drydryP o (r1) Top(ri)Pp(ra). (BY)
Thjs is more conveniently described in the Fourier represen- UeI:(87T)_lf dk(Ey- € E_}). (B12)
tation
B Thus we conclude that the free energy of a fluid with long-
— 2
Ue'_ZT’J dk(Py- k) (P k)K=, (B9) range electrostatic intermolecular interactions can be calcu-

lated using the effective short-range potential
In a medium without an external field the average polary/ (1,2)=V¢(1,2) 0 (£;,—r1,) — 1]. The energy of the av-
ization P is related to the macroscopic electric fidldby  erage electric field in the medium, which represents the av-
static Maxwell equation¥ -D=0 andV XE=0, where the erage long-range part of the electrostatic intermolecular in-
inductionD=E+ 4#7P. These equations yield the simple re- teraction, must be added to the free energy at the final stage
lation between the electric field, and the longitudinal part and must be taken into account in the minimization of the

of the polarizatiorP,, total free energy with respect to the polarizati®n
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